-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcomplex_net_tcn_dense_unet_16k.py
273 lines (237 loc) · 14.7 KB
/
complex_net_tcn_dense_unet_16k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#!/usr/bin/env python
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_sequence
from conv_blocks import Conv2dBNReLUBlock, DenseBlockNoOutCat, TCNDepthWise, DenseBlockNoOutCatFM
class CSeqUNetDense(nn.Module):
def __getitem__(self, key):
return getattr(self, key)
def __init__(self, input_dim, nlayer, n_units, target_dim, use_seqmodel, masking_or_mapping,
output_activation, rmax,
approx_method, loss_function,
use_batchnorm, use_convbnrelu, use_act,
memory_efficient, n_outputs=2):
super(CSeqUNetDense, self).__init__()
"""
In the CHiME-4 paper, the arguments are:
input_dim=x*257
nlayer=2
n_units=512
target_dim=257
use_seqmodel=1
masking_or_mapping=1
output_activation='linear'
rmax=5
approx_method='MSA-RIx2'
loss_function='l1loss'
use_batchnorm=3
use_convbnrelu=2
use_act=2
memory_efficient=1
"""
approx_method = approx_method.split('-')
self.approx_method = approx_method
if loss_function not in ['l1loss', 'l2loss']:raise
self.loss_function = loss_function
if target_dim not in [257]: raise
if input_dim % target_dim != 0: raise
in_channels = input_dim // target_dim
assert in_channels >= 1
t_ksize = 3
#
# 257, 1 2/4
#(257-5)/2+1 = 127, 32 ---5*32--> 32 + 32 ---5*32---> 32
#(127-3)/2+1 = 63, 32 ---5*32--> 32 + 32 ---5*32---> 32
#(63-3)/2+1 = 31, 32 ---5*32--> 32 + 32 ---5*32---> 32
#(31-3)/2+1 = 15, 64 ---5*64--> 64 + 64 ---5*64---> 64
#(15-3)/2+1 = 7, 128 + 128
#(7-3)/2+1 = 3, 256 + 256
#(3-3)/1+1 = 1, 512 + 512
#
self.conv0 = nn.Conv2d(in_channels,32,(t_ksize,5),stride=(1,2),padding=(t_ksize//2,0))
self.eden0 = DenseBlockNoOutCatFM(32,32,(t_ksize,3),127,n_layers=5,use_batchnorm=use_batchnorm,use_act=use_act,use_convbnrelu=use_convbnrelu,memory_efficient=memory_efficient)
self.conv1 = Conv2dBNReLUBlock(32,32,(t_ksize,3),stride=(1,2),padding=(t_ksize//2,0),use_batchnorm=use_batchnorm,use_act=use_act,use_convbnrelu=use_convbnrelu,memory_efficient=memory_efficient)
self.eden1 = DenseBlockNoOutCatFM(32,32,(t_ksize,3),63,n_layers=5,use_batchnorm=use_batchnorm,use_act=use_act,use_convbnrelu=use_convbnrelu,memory_efficient=memory_efficient)
self.conv2 = Conv2dBNReLUBlock(32,32,(t_ksize,3),stride=(1,2),padding=(t_ksize//2,0),use_batchnorm=use_batchnorm,use_act=use_act,use_convbnrelu=use_convbnrelu,memory_efficient=memory_efficient)
self.eden2 = DenseBlockNoOutCatFM(32,32,(t_ksize,3),31,n_layers=5,use_batchnorm=use_batchnorm,use_act=use_act,use_convbnrelu=use_convbnrelu,memory_efficient=memory_efficient)
self.conv3 = Conv2dBNReLUBlock(32,64,(t_ksize,3),stride=(1,2),padding=(t_ksize//2,0),use_batchnorm=use_batchnorm,use_act=use_act,use_convbnrelu=use_convbnrelu,memory_efficient=memory_efficient)
self.eden3 = DenseBlockNoOutCatFM(64,64,(t_ksize,3),15,n_layers=5,use_batchnorm=use_batchnorm,use_act=use_act,use_convbnrelu=use_convbnrelu,memory_efficient=memory_efficient)
self.conv4 = Conv2dBNReLUBlock(64,128,(t_ksize,3),stride=(1,2),padding=(t_ksize//2,0),use_batchnorm=use_batchnorm,use_act=use_act,use_convbnrelu=use_convbnrelu,memory_efficient=memory_efficient)
self.conv5 = Conv2dBNReLUBlock(128,256,(t_ksize,3),stride=(1,2),padding=(t_ksize//2,0),use_batchnorm=use_batchnorm,use_act=use_act,use_convbnrelu=use_convbnrelu,memory_efficient=memory_efficient)
self.conv6 = Conv2dBNReLUBlock(256,512,(t_ksize,3),stride=(1,1),padding=(t_ksize//2,0),use_batchnorm=use_batchnorm,use_act=use_act,use_convbnrelu=use_convbnrelu,memory_efficient=memory_efficient)
encoder_dim = 512
input_dim = encoder_dim
if use_seqmodel == 0:
for i in range(nlayer):
input_dim = input_dim if i == 0 else n_units*2
self.add_module("bilstm-%d"%i, nn.LSTM(input_dim, n_units, 1, batch_first=True, dropout=0.0, bidirectional=True))
# Setting forget gate bias to a 2.0
self["bilstm-%d"%i].bias_hh_l0.data[n_units:2*n_units] = 1.0
self["bilstm-%d"%i].bias_ih_l0.data[n_units:2*n_units] = 1.0
self["bilstm-%d"%i].bias_hh_l0_reverse.data[n_units:2*n_units] = 1.0
self["bilstm-%d"%i].bias_ih_l0_reverse.data[n_units:2*n_units] = 1.0
else:
tcn_classname = TCNDepthWise
for ii in range(1,nlayer+1):
self.add_module('tcn-conv%d-0'%ii, tcn_classname(input_dim,input_dim,t_ksize,use_batchnorm=use_batchnorm,use_act=use_act,dilation=1))
self.add_module('tcn-conv%d-1'%ii, tcn_classname(input_dim,input_dim,t_ksize,use_batchnorm=use_batchnorm,use_act=use_act,dilation=2))
self.add_module('tcn-conv%d-2'%ii, tcn_classname(input_dim,input_dim,t_ksize,use_batchnorm=use_batchnorm,use_act=use_act,dilation=4))
self.add_module('tcn-conv%d-3'%ii, tcn_classname(input_dim,input_dim,t_ksize,use_batchnorm=use_batchnorm,use_act=use_act,dilation=8))
self.add_module('tcn-conv%d-4'%ii, tcn_classname(input_dim,input_dim,t_ksize,use_batchnorm=use_batchnorm,use_act=use_act,dilation=16))
self.add_module('tcn-conv%d-5'%ii, tcn_classname(input_dim,input_dim,t_ksize,use_batchnorm=use_batchnorm,use_act=use_act,dilation=32))
self.output_activation = output_activation
self.rmax = rmax
if masking_or_mapping == 0:
#masking
initial_bias = 0.0
else:
#mapping
initial_bias = 0.0
#
# 257, 1 2/4
#(257-5)/2+1 = 127, 32 ---5*32--> 32 + 32 ---5*32---> 32
#(127-3)/2+1 = 63, 32 ---5*32--> 32 + 32 ---5*32---> 32
#(63-3)/2+1 = 31, 32 ---5*32--> 32 + 32 ---5*32---> 32
#(31-3)/2+1 = 15, 64 ---5*64--> 64 + 64 ---5*64---> 64
#(15-3)/2+1 = 7, 128 + 128
#(7-3)/2+1 = 3, 256 + 256
#(3-3)/1+1 = 1, 512 + 512
#
self.deconv0 = Conv2dBNReLUBlock(encoder_dim+input_dim,256,(t_ksize,3),stride=(1,1),padding=(t_ksize//2,0),use_deconv=1,use_batchnorm=use_batchnorm,use_act=use_act,use_convbnrelu=use_convbnrelu,memory_efficient=memory_efficient)
self.deconv1 = Conv2dBNReLUBlock(2*256,128,(t_ksize,3),stride=(1,2),padding=(t_ksize//2,0),use_deconv=1,use_batchnorm=use_batchnorm,use_act=use_act,use_convbnrelu=use_convbnrelu,memory_efficient=memory_efficient)
self.deconv2 = Conv2dBNReLUBlock(2*128,64,(t_ksize,3),stride=(1,2),padding=(t_ksize//2,0),use_deconv=1,use_batchnorm=use_batchnorm,use_act=use_act,use_convbnrelu=use_convbnrelu,memory_efficient=memory_efficient)
self.dden2 = DenseBlockNoOutCatFM(64+64,64,(t_ksize,3),15,n_layers=5,use_batchnorm=use_batchnorm,use_act=use_act,use_convbnrelu=use_convbnrelu,memory_efficient=memory_efficient)
self.deconv3 = Conv2dBNReLUBlock(64,32,(t_ksize,3),stride=(1,2),padding=(t_ksize//2,0),use_deconv=1,use_batchnorm=use_batchnorm,use_act=use_act,use_convbnrelu=use_convbnrelu,memory_efficient=memory_efficient)
self.dden3 = DenseBlockNoOutCatFM(32+32,32,(t_ksize,3),31,n_layers=5,use_batchnorm=use_batchnorm,use_act=use_act,use_convbnrelu=use_convbnrelu,memory_efficient=memory_efficient)
self.deconv4 = Conv2dBNReLUBlock(32,32,(t_ksize,3),stride=(1,2),padding=(t_ksize//2,0),use_deconv=1,use_batchnorm=use_batchnorm,use_act=use_act,use_convbnrelu=use_convbnrelu,memory_efficient=memory_efficient)
self.dden4 = DenseBlockNoOutCatFM(32+32,32,(t_ksize,3),63,n_layers=5,use_batchnorm=use_batchnorm,use_act=use_act,use_convbnrelu=use_convbnrelu,memory_efficient=memory_efficient)
self.deconv5 = Conv2dBNReLUBlock(32,32,(t_ksize,3),stride=(1,2),padding=(t_ksize//2,0),use_deconv=1,use_batchnorm=use_batchnorm,use_act=use_act,use_convbnrelu=use_convbnrelu,memory_efficient=memory_efficient)
self.dden5 = DenseBlockNoOutCatFM(32+32,32,(t_ksize,3),127,n_layers=5,use_batchnorm=use_batchnorm,use_act=use_act,use_convbnrelu=use_convbnrelu,memory_efficient=memory_efficient)
self.deconv6 = nn.ConvTranspose2d(32,n_outputs,(t_ksize,5),stride=(1,2),padding=(t_ksize//2,0))
self.deconv6.bias.data[:] = initial_bias
self.target_dim = target_dim
self.nlayer = nlayer
self.n_units = n_units
self.use_seqmodel = use_seqmodel
self.masking_or_mapping = masking_or_mapping
self.n_outputs = n_outputs
def forward(self, x_ins, device, input_dropout_rate=0.0, hidden_dropout_rate=0.0, dilation_dropout_rate=0.0):
"""
x_ins: list of 2D tensors
"""
batchsize = len(x_ins)
ilenvec = [x_in.shape[0] for x_in in x_ins]
N = max(ilenvec)
batch = np.concatenate(x_ins,axis=0)
batch = torch.from_numpy(batch)
batch = torch.split(batch,ilenvec,dim=0)
batch = pad_sequence(batch,batch_first=True,padding_value=0) #[batchsize, N, -1]
batch = batch.to(device)
if input_dropout_rate > 0.0:
batch = F.dropout(batch,p=input_dropout_rate,training=True,inplace=False)
batch = batch.view([batchsize,N,-1,self.target_dim]) #[batchsize, N, -1, n_freqs]
batch = batch.transpose(1,2) #[batchsize, -1, N, n_freqs]
all_conv_batch = []
for cc in range(10):
conv_link_name = 'conv%d'%cc
if hasattr(self, conv_link_name):
batch = self[conv_link_name](batch)
eden_link_name = 'eden%d'%cc
if hasattr(self, eden_link_name):
batch = self[eden_link_name](batch)
all_conv_batch.append(batch)
else:
break
#batch.shape is [batchsize, self.n_units, N, 1]
if self.use_seqmodel == 0:
batch = batch.squeeze(dim=-1) #[batchsize, self.n_units, N]
batch = batch.transpose(1,2) #[batchsize, N, self.n_units]
batch = self.propagate_full_sequence(batch, dropout_rate=hidden_dropout_rate) #[batchsize, N, 2*self.n_units]
batch = batch.transpose(1,2) #[batchsize, 2*self.n_units, N]
batch = batch.unsqueeze(dim=-1) #[batchsize, 2*self.n_units, N, 1]
else:
batch = batch.view([batchsize,self.n_units,N]) #[batchsize, self.n_units, N]
for ii in range(1, self.nlayer+1):
for cc in range(20):
conv_link_name = 'tcn-conv%d-%d'%(ii,cc)
if hasattr(self, conv_link_name):
batch = self[conv_link_name](batch,
hidden_dropout_rate=hidden_dropout_rate,
dilation_dropout_rate=dilation_dropout_rate)
else:
break
batch = batch.unsqueeze(dim=-1) #[batchsize, self.n_units, N, 1]
for cc in range(10):
deconv_link_name = 'deconv%d'%cc
if hasattr(self, deconv_link_name):
if cc-1 >= 0 and hasattr(self, 'dden%d'%(cc-1)):
batch = self[deconv_link_name](batch)
else:
batch = self[deconv_link_name](torch.cat([batch,all_conv_batch[-1-cc]],dim=1))
dden_link_name = 'dden%d'%cc
if hasattr(self, dden_link_name):
batch = self[dden_link_name](torch.cat([batch,all_conv_batch[-1-cc-1]],dim=1))
else:
break
#batch.shape is [batchsize, -1, N, self.target_dim]
batch = batch.transpose(1,2) #[batchsize, N, -1, self.target_dim]
batch = batch.reshape([batchsize,N,-1]) #[batchsize, N, num_speakers*n_outputs*self.target_dim]
batch = [batch[bb,:utt_len] for bb,utt_len in enumerate(ilenvec)]
batch = torch.cat(batch,dim=0) #[-1,n_outputs*target_dim]
if self.masking_or_mapping == 0:
#masking
if self.pitactivation == 'linear':
activations = torch.clamp(batch,-self.rmax,self.rmax)
else:
raise
else:
#mapping
if self.output_activation == 'linear':
activations = batch
else:
raise
self.activations = activations #[n_frames,n_outputs*target_dim]
def get_loss(self, ins, device):
if self.loss_function.startswith('l2'):
raise
else:
loss_type = torch.abs
y_reals = np.concatenate(ins[0][1], axis=0)
y_imags = np.concatenate(ins[0][2], axis=0)
y_reals = torch.from_numpy(y_reals).to(device)
y_imags = torch.from_numpy(y_imags).to(device)
activations_reals, activations_imags = torch.chunk(self.activations,self.n_outputs,dim=-1)
if self.masking_or_mapping == 0:
x_reals = np.concatenate(ins[1][1], axis=0)
x_imags = np.concatenate(ins[1][2], axis=0)
x_reals = torch.from_numpy(x_reals).to(device)
x_imags = torch.from_numpy(x_imags).to(device)
#(a+b*i)*(c+d*i) = ac-bd + (ad+bc)*i
activations_reals, activations_imags = x_reals*activations_reals-x_imags*activations_imags, x_reals*activations_imags+x_imags*activations_reals
else:
pass
est_y_reals, est_y_imags = activations_reals, activations_imags
ret = [torch.tensor(0.0,device=device)]
if 'MSA' in self.approx_method:
y_mags = torch.sqrt(y_reals**2+y_imags**2+1e-5)
est_y_mags = torch.sqrt(est_y_reals**2+est_y_imags**2+1e-5)
loss_mags = torch.mean(loss_type(est_y_mags - y_mags))
ret[0] += loss_mags
ret.append(loss_mags)
if 'RIx2' in self.approx_method:
loss_reals = torch.mean(loss_type(y_reals - est_y_reals))
loss_imags = torch.mean(loss_type(y_imags - est_y_imags))
ret[0] += ((loss_reals+loss_imags))
ret.append(loss_reals)
ret.append(loss_imags)
return ret
def propagate_one_layer(self, batch, layer, dropout_rate=0.0):
batch, (_, _) = self['bilstm-%d'%layer](batch)
return F.dropout(batch, p=dropout_rate, training=True, inplace=False) if dropout_rate > 0.0 else batch
def propagate_full_sequence(self, batch, dropout_rate=0.0):
for ll in range(self.nlayer-1):
batch = self.propagate_one_layer(batch, ll, dropout_rate=dropout_rate)
batch = self.propagate_one_layer(batch, self.nlayer-1, dropout_rate=0.0)
return batch