-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
201 lines (156 loc) · 9.21 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
from transformers import AutoTokenizer, AutoModelForMaskedLM
import requests
from io import BytesIO
import pandas
from sklearn.model_selection import train_test_split
import numpy as np
from sklearn.metrics import accuracy_score
import json
print("Loading model and tokenizer...")
tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t12_35M_UR50D")
model = AutoModelForMaskedLM.from_pretrained("facebook/esm2_t12_35M_UR50D")
# Lines 14-31 were written with minimal changes from: https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/protein_language_modeling.ipynb#scrollTo=c718ffbc
print("Downloading and processing UniProt dataset...")
query_url ="https://rest.uniprot.org/uniprotkb/stream?compressed=true&fields=accession%2Csequence%2Ccc_subcellular_location&format=tsv&query=%28%28organism_id%3A9606%29%20AND%20%28reviewed%3Atrue%29%20AND%20%28length%3A%5B80%20TO%20500%5D%29%29"
uniprot_request = requests.get(query_url)
bio = BytesIO(uniprot_request.content)
df = pandas.read_csv(bio, compression='gzip', sep='\t')
cytosolic = df['Subcellular location [CC]'].str.contains("Cytosol") | df['Subcellular location [CC]'].str.contains("Cytoplasm")
membrane = df['Subcellular location [CC]'].str.contains("Membrane") | df['Subcellular location [CC]'].str.contains("Cell membrane")
membrane_df = df[membrane & ~cytosolic]
cytosolic_df = df[cytosolic & ~membrane]
membrane_sequences = membrane_df["Sequence"].tolist()
cytosolic_sequences = cytosolic_df["Sequence"].tolist()
membrane_train, membrane_test = train_test_split(membrane_sequences, test_size=0.2, random_state=42)
cytosolic_train, cytosolic_test = train_test_split(cytosolic_sequences, test_size=0.2, random_state=42)
membrane_train = membrane_train[:200]
cytosolic_train = cytosolic_train[:200]
print(f"Processing training data: {len(membrane_train)} membrane sequences and {len(cytosolic_train)} cytosolic sequences")
membrane_train_tokens = [tokenizer(s, return_tensors="pt") for s in membrane_train]
cytosolic_train_tokens = [tokenizer(s, return_tensors="pt") for s in cytosolic_train]
NUM_HIDDEN_LAYERS = 13
print("Calculating hidden states for membrane training proteins...")
membrane_train_hidden_states = dict()
for i, membrane_example in enumerate(membrane_train_tokens):
if i % 25 == 0: # Print progress every 25 sequences
print(f"Processing membrane sequence {i}/{len(membrane_train_tokens)}")
inputs = membrane_example
inputs['output_hidden_states'] = True
outputs = model.forward(**inputs)
for i, layer in enumerate(outputs.hidden_states):
layer = layer.detach().numpy()
layer = layer[:, -1, :].squeeze(0) # Use last token based on previous analysis
membrane_train_hidden_states[i] = membrane_train_hidden_states.get(i, []) + [layer]
print("Calculating hidden states for cytosolic training proteins...")
cytosolic_train_hidden_states = dict()
for i, cytosolic_example in enumerate(cytosolic_train_tokens):
if i % 25 == 0: # Print progress every 25 sequences
print(f"Processing membrane sequence {i}/{len(cytosolic_train_tokens)}")
inputs = cytosolic_example
inputs['output_hidden_states'] = True
outputs = model.forward(**inputs)
for i, layer in enumerate(outputs.hidden_states):
layer = layer.detach().numpy()
layer = layer[:, -1, :].squeeze(0) # Use last token based on previous analysis
cytosolic_train_hidden_states[i] = cytosolic_train_hidden_states.get(i, []) + [layer]
print("Computing steering vectors...")
STEERING_VECTOR_LAYER_NUMBER = 3
membrane_train_avg_hidden_states = np.array(membrane_train_hidden_states[STEERING_VECTOR_LAYER_NUMBER])
membrane_train_avg_hidden_states = np.sum(membrane_train_avg_hidden_states, axis=0) / len(membrane_train_hidden_states[STEERING_VECTOR_LAYER_NUMBER])
cytosolic_train_avg_hidden_states = np.array(cytosolic_train_hidden_states[STEERING_VECTOR_LAYER_NUMBER])
cytosolic_train_avg_hidden_states = np.sum(cytosolic_train_avg_hidden_states, axis=0) / len(cytosolic_train_hidden_states[STEERING_VECTOR_LAYER_NUMBER])
final_steering_vector = membrane_train_avg_hidden_states - cytosolic_train_avg_hidden_states
# Calculate training projections to determine threshold
print("Calculating training projections to determine optimal threshold...")
def project_vector(vector, steering_vector):
return np.dot(vector, steering_vector) / np.linalg.norm(steering_vector)
# Calculate projections for training data
membrane_train_projections = []
cytosolic_train_projections = []
membrane_train_layer = membrane_train_hidden_states[STEERING_VECTOR_LAYER_NUMBER]
cytosolic_train_layer = cytosolic_train_hidden_states[STEERING_VECTOR_LAYER_NUMBER]
for hidden_state in membrane_train_layer:
projection = project_vector(hidden_state, final_steering_vector)
membrane_train_projections.append(projection)
for hidden_state in cytosolic_train_layer:
projection = project_vector(hidden_state, final_steering_vector)
cytosolic_train_projections.append(projection)
# Find optimal threshold using training data
def find_optimal_thresholds(membrane_projections, cytosolic_projections):
# Prepare data for ROC and other analyses
X = np.concatenate([membrane_projections, cytosolic_projections])
y = np.concatenate([np.ones(len(membrane_projections)),
np.zeros(len(cytosolic_projections))])
sorted_projections = np.sort(X)
accuracies = []
thresholds = []
for threshold in sorted_projections:
predictions = (X > threshold).astype(int)
acc = accuracy_score(y, predictions)
accuracies.append(acc)
thresholds.append(threshold)
best_idx = np.argmax(accuracies)
return thresholds[best_idx], accuracies[best_idx]
SIMILARITY_THRESHOLD, train_accuracy = find_optimal_thresholds(membrane_train_projections, cytosolic_train_projections)
print(f"Determined optimal threshold from training data: {SIMILARITY_THRESHOLD}")
print(f"Training accuracy at optimal threshold: {train_accuracy}")
# Save final steering vector to file
with open("final_steering_vector.json", "w") as f:
json.dump(final_steering_vector.tolist(), f)
print("Testing steering vector predictions...")
membrane_test_tokens = [tokenizer(s, return_tensors="pt") for s in membrane_test]
cytosolic_test_tokens = [tokenizer(s, return_tensors="pt") for s in cytosolic_test]
membrane_test_tokens = membrane_test_tokens[:100]
cytosolic_test_tokens = cytosolic_test_tokens[:100]
membrane_test_hidden_states = dict()
for membrane_example in membrane_test_tokens:
inputs = membrane_example
inputs['output_hidden_states'] = True
outputs = model.forward(**inputs)
for i, layer in enumerate(outputs.hidden_states):
layer = layer.detach().numpy()
layer = layer[:, -1, :].squeeze(0) # Use last token based on previous analysis
membrane_test_hidden_states[i] = membrane_test_hidden_states.get(i, []) + [layer]
cytosolic_test_hidden_states = dict()
for cytosolic_example in cytosolic_test_tokens:
inputs = cytosolic_example
inputs['output_hidden_states'] = True
outputs = model.forward(**inputs)
for i, layer in enumerate(outputs.hidden_states):
layer = layer.detach().numpy()
layer = layer[:, -1, :].squeeze(0) # Use last token based on previous analysis
cytosolic_test_hidden_states[i] = cytosolic_test_hidden_states.get(i, []) + [layer]
print("Making final predictions...")
membrane_predictions = []
cytosolic_predictions = []
membrane_example = membrane_test_hidden_states[STEERING_VECTOR_LAYER_NUMBER]
cytosolic_example = cytosolic_test_hidden_states[STEERING_VECTOR_LAYER_NUMBER]
for i in range(len(membrane_example)):
membrane_hidden_state = membrane_example[i]
membrane_projection = project_vector(membrane_hidden_state, final_steering_vector)
membrane_predictions.append(membrane_projection)
for i in range(len(cytosolic_example)):
cytosolic_hidden_state = cytosolic_example[i]
cytosolic_projection = project_vector(cytosolic_hidden_state, final_steering_vector)
cytosolic_predictions.append(cytosolic_projection)
membrane_test_avg_projection = np.mean(membrane_predictions)
cytosolic_test_avg_projection = np.mean(cytosolic_predictions)
membrane_correct = sum([1 for p in membrane_predictions if p > SIMILARITY_THRESHOLD])
cytosolic_correct = sum([1 for p in cytosolic_predictions if p < SIMILARITY_THRESHOLD])
print("\nFinal Results:")
print(f"Membrane correct: {membrane_correct} / {len(membrane_predictions)}")
print(f"Cytosolic correct: {cytosolic_correct} / {len(cytosolic_predictions)}")
print("--------")
accuracy = (membrane_correct + cytosolic_correct) / (len(membrane_predictions) + len(cytosolic_predictions))
print(f"Test accuracy: {accuracy}")
membrane_accuracy = membrane_correct / len(membrane_predictions)
cytosolic_accuracy = cytosolic_correct / len(cytosolic_predictions)
print(f"Membrane accuracy: {membrane_accuracy}")
print(f"Cytosolic accuracy: {cytosolic_accuracy}")
print("--------")
print(f"Test membrane average projection: {membrane_test_avg_projection}")
print(f"Test cytosolic average projection: {cytosolic_test_avg_projection}")
print("--------")
print(f"Saving steering vector from layer #{STEERING_VECTOR_LAYER_NUMBER} to final_steering_vector.json")
with open("final_steering_vector.json", "w") as f:
json.dump(final_steering_vector.tolist(), f)