-
Notifications
You must be signed in to change notification settings - Fork 145
/
main.py
425 lines (341 loc) · 20.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
# 导入tushare
import tushare as ts
import matplotlib.pyplot as plt
import pandas as pd
import os
import json
from matplotlib.ticker import MaxNLocator
import matplotlib.font_manager as fm
from lab_gpt4_call import send_chat_request,send_chat_request_Azure,send_official_call
from lab_llms_call import send_chat_request_qwen,send_chat_request_glm,send_chat_request_chatglm3_6b,send_chat_request_chatglm_6b
# from lab_llm_local_call import send_chat_request_internlm_chat
#import ast
import re
from tool import *
import tiktoken
import concurrent.futures
import datetime
from PIL import Image
from io import BytesIO
import queue
import datetime
from threading import Thread
plt.rcParams['font.sans-serif'] = ['Arial Unicode MS']
plt.rcParams['axes.unicode_minus'] = False
import openai
# To override the Thread method
class MyThread(Thread):
def __init__(self, target, args):
super(MyThread, self).__init__()
self.func = target
self.args = args
def run(self):
self.result = self.func(*self.args)
def get_result(self):
return self.result
def parse_and_exe(call_dict, result_buffer, parallel_step: str='1'):
"""
Parse the input and call the corresponding function to obtain the result.
:param call_dict: dict, including arg, func, and output
:param result_buffer: dict, storing the corresponding intermediate results
:param parallel_step: int, parallel step
:return: Returns func(arg) and stores the corresponding result in result_buffer.
"""
arg_list = call_dict['arg' + parallel_step]
replace_arg_list = [result_buffer[item][0] if isinstance(item, str) and ('result' in item or 'input' in item) else item for item in arg_list] # 参数
func_name = call_dict['function' + parallel_step] #
output = call_dict['output' + parallel_step] #
desc = call_dict['description' + parallel_step] #
if func_name == 'loop_rank':
replace_arg_list[1] = eval(replace_arg_list[1])
result = eval(func_name)(*replace_arg_list)
result_buffer[output] = (result, desc) # 'result1': (df1, desc)
return result_buffer
def load_tool_and_prompt(tool_lib, tool_prompt ):
'''
Read two JSON files.
:param tool_lib: Tool description
:param tool_prompt: Tool prompt
:return: Flattened prompt
'''
#
with open(tool_lib, 'r') as f:
tool_lib = json.load(f)
with open(tool_prompt, 'r') as f:
#
tool_prompt = json.load(f)
for key, value in tool_lib.items():
tool_prompt["Function Library:"] = tool_prompt["Function Library:"] + key + " " + value+ '\n\n'
prompt_flat = ''
for key, value in tool_prompt.items():
prompt_flat = prompt_flat + key +' '+ value + '\n\n'
return prompt_flat
# callback function
intermediate_results = queue.Queue() # Create a queue to store intermediate results.
def add_to_queue(intermediate_result):
intermediate_results.put(f"After planing, the intermediate result is {intermediate_result}")
def check_RPM(run_time_list, new_time, max_RPM=1):
# Check if there are already 3 timestamps in the run_time_list, with a maximum of 3 accesses per minute.
# False means no rest is needed, True means rest is needed.
if len(run_time_list) < 3:
run_time_list.append(new_time)
return 0
else:
if (new_time - run_time_list[0]).seconds < max_RPM:
# Calculate the required rest time.
sleep_time = 60 - (new_time - run_time_list[0]).seconds
print('sleep_time:', sleep_time)
run_time_list.pop(0)
run_time_list.append(new_time)
return sleep_time
else:
run_time_list.pop(0)
run_time_list.append(new_time)
return 0
def run(model, instruction, add_to_queue=None, send_chat_request_Azure = send_official_call, openai_key = '', api_base='', engine=''):
output_text = ''
################################# Step-1:Task select ###########################################
current_time = datetime.datetime.now()
formatted_time = current_time.strftime("%Y-%m-%d")
# If the time has not exceeded 3 PM, use yesterday's data.
if current_time.hour < 15:
formatted_time = (current_time - datetime.timedelta(days=1)).strftime("%Y-%m-%d")
print('===============================Intent Detecting===========================================')
with open('./prompt_lib/prompt_intent_detection.json', 'r') as f:
prompt_task_dict = json.load(f)
prompt_intent_detection = ''
for key, value in prompt_task_dict.items():
prompt_intent_detection = prompt_intent_detection + key + ": " + value+ '\n\n'
prompt_intent_detection = prompt_intent_detection + '\n\n' + 'Instruction:' + '今天的日期是'+ formatted_time +', '+ instruction + ' ###New Instruction: '
# Record the running time.
# current_time = datetime.datetime.now()
# sleep_time = check_RPM(run_time, current_time)
# if sleep_time > 0:
# time.sleep(sleep_time)
# response = send_chat_request("qwen-chat-72b",prompt_intent_detection)
response = send_chat_request(model,prompt_intent_detection, openai_key=openai_key, api_base=api_base, engine=engine)
new_instruction = response
print('new_instruction:', new_instruction)
output_text = output_text + '\n======Intent Detecting Stage=====\n\n'
output_text = output_text + new_instruction +'\n\n'
if add_to_queue is not None:
add_to_queue(output_text)
event_happen = True
print('===============================Task Planing===========================================')
output_text= output_text + '=====Task Planing Stage=====\n\n'
with open('./prompt_lib/prompt_task.json', 'r') as f:
prompt_task_dict = json.load(f)
prompt_task = ''
for key, value in prompt_task_dict.items():
prompt_task = prompt_task + key + ": " + value+ '\n\n'
prompt_task = prompt_task + '\n\n' + 'Instruction:' + new_instruction + ' ###Plan:'
# current_time = datetime.datetime.now()
# sleep_time = check_RPM(run_time, current_time)
# if sleep_time > 0:
# time.sleep(sleep_time)
# response = send_chat_request("qwen-chat-72b",prompt_task)
response = send_chat_request(model, prompt_task, openai_key=openai_key,api_base=api_base,engine=engine)
task_select = response
pattern = r"(task\d+=)(\{[^}]*\})"
matches = re.findall(pattern, task_select)
task_plan = {}
for task in matches:
task_step, task_select = task
task_select = task_select.replace("'", "\"") # Replace single quotes with double quotes.
task_select = json.loads(task_select)
task_name = list(task_select.keys())[0]
task_instruction = list(task_select.values())[0]
task_plan[task_name] = task_instruction
# task_plan
for key, value in task_plan.items():
print(key, ':', value)
output_text = output_text + key + ': ' + str(value) + '\n'
output_text = output_text +'\n'
if add_to_queue is not None:
add_to_queue(output_text)
################################# Step-2:Tool select and use ###########################################
print('===============================Tool select and using Stage===========================================')
output_text = output_text + '======Tool select and using Stage======\n\n'
# Read the task_select JSON file name.
task_name = list(task_plan.keys())[0].split('_task')[0]
task_instruction = list(task_plan.values())[0]
tool_lib = './tool_lib/' + 'tool_' + task_name + '.json'
tool_prompt = './prompt_lib/' + 'prompt_' + task_name + '.json'
prompt_flat = load_tool_and_prompt(tool_lib, tool_prompt)
prompt_flat = prompt_flat + '\n\n' +'Instruction :'+ task_instruction+ ' ###Function Call'
#response = "step1={\n \"arg1\": [\"贵州茅台\"],\n \"function1\": \"get_stock_code\",\n \"output1\": \"result1\"\n},step2={\n \"arg1\": [\"result1\",\"20180123\",\"20190313\",\"daily\"],\n \"function1\": \"get_stock_prices_data\",\n \"output1\": \"result2\"\n},step3={\n \"arg1\": [\"result2\",\"close\"],\n \"function1\": \"calculate_stock_index\",\n \"output1\": \"result3\"\n}, ###Output:{\n \"贵州茅台在2018年1月23日到2019年3月13的每日收盘价格的时序表格\": \"result3\",\n}"
# current_time = datetime.datetime.now()
# sleep_time = check_RPM(run_time, current_time)
# if sleep_time > 0:
# time.sleep(sleep_time)
# response = send_chat_request("qwen-chat-72b",prompt_flat)
response = send_chat_request(model, prompt_flat, openai_key=openai_key,api_base=api_base, engine=engine)
#response = "Function Call:step1={\n \"arg1\": [\"五粮液\"],\n \"function1\": \"get_stock_code\",\n \"output1\": \"result1\",\n \"arg2\": [\"泸州老窖\"],\n \"function2\": \"get_stock_code\",\n \"output2\": \"result2\"\n},step2={\n \"arg1\": [\"result1\",\"20190101\",\"20220630\",\"daily\"],\n \"function1\": \"get_stock_prices_data\",\n \"output1\": \"result3\",\n \"arg2\": [\"result2\",\"20190101\",\"20220630\",\"daily\"],\n \"function2\": \"get_stock_prices_data\",\n \"output2\": \"result4\"\n},step3={\n \"arg1\": [\"result3\",\"Cumulative_Earnings_Rate\"],\n \"function1\": \"calculate_stock_index\",\n \"output1\": \"result5\",\n \"arg2\": [\"result4\",\"Cumulative_Earnings_Rate\"],\n \"function2\": \"calculate_stock_index\",\n \"output2\": \"result6\"\n}, ###Output:{\n \"五粮液在2019年1月1日到2022年06月30的每日收盘价格时序表格\": \"result5\",\n \"泸州老窖在2019年1月1日到2022年06月30的每日收盘价格时序表格\": \"result6\"\n}"
if '###' in response:
call_steps, _ = response.split('###')
else:
call_steps = response
pattern = r"(step\d+=)(\{[^}]*\})"
matches = re.findall(pattern, call_steps)
# pattern = r"(step\d+=)(\{[^}]*\})"
# matches = re.findall(pattern, response)
result_buffer = {} # The stored format is as follows: {'result1': (000001.SH, 'Stock code of China Ping An'), 'result2': (df2, 'Stock data of China Ping An from January to June 2021')}.
output_buffer = [] # Store the variable names [result5, result6] that will be passed as the final output to the next task.
# print(task_output)
#
for match in matches:
step, content = match
content = content.replace("'", "\"") # Replace single quotes with double quotes.
print('==================')
print("\n\nstep:", step)
print('content:',content)
call_dict = json.loads(content)
print('It has parallel steps:', len(call_dict) / 4)
output_text = output_text + step + ': ' + str(call_dict) + '\n\n'
# Execute the following code in parallel using multiple processes.
with concurrent.futures.ThreadPoolExecutor() as executor:
# Submit tasks to thread pool
futures = {executor.submit(parse_and_exe, call_dict, result_buffer, str(parallel_step))
for parallel_step in range(1, int(len(call_dict) / 4) + 1)}
# Collect results as they become available
for idx, future in enumerate(concurrent.futures.as_completed(futures)):
# Handle possible exceptions
try:
result = future.result()
# Print the current parallel step number.
print('parallel step:', idx+1)
# print(list(result[1].keys())[0])
# print(list(result[1].values())[0])
except Exception as exc:
print(f'Generated an exception: {exc}')
if step == matches[-1][0]:
# Current task's final step. Save the output of the final step.
for parallel_step in range(1, int(len(call_dict) / 4) + 1):
output_buffer.append(call_dict['output' + str(parallel_step)])
output_text = output_text + '\n'
if add_to_queue is not None:
add_to_queue(output_text)
################################# Step-3:visualization ###########################################
print('===============================Visualization Stage===========================================')
output_text = output_text + '======Visualization Stage====\n\n'
task_name = list(task_plan.keys())[1].split('_task')[0] #visualization_task
#task_name = 'visualization'
task_instruction = list(task_plan.values())[1] #''
tool_lib = './tool_lib/' + 'tool_' + task_name + '.json'
tool_prompt = './prompt_lib/' + 'prompt_' + task_name + '.json'
result_buffer_viz={}
Previous_result = {}
for output_name in output_buffer:
rename = 'input'+ str(output_buffer.index(output_name)+1)
Previous_result[rename] = result_buffer[output_name][1]
result_buffer_viz[rename] = result_buffer[output_name]
prompt_flat = load_tool_and_prompt(tool_lib, tool_prompt)
prompt_flat = prompt_flat + '\n\n' +'Instruction: '+ task_instruction + ', Previous_result: '+ str(Previous_result) + ' ###Function Call'
# current_time = datetime.datetime.now()
# sleep_time = check_RPM(run_time, current_time)
# if sleep_time > 0:
# time.sleep(sleep_time)
# response = send_chat_request("qwen-chat-72b", prompt_flat)
response = send_chat_request(model, prompt_flat, openai_key=openai_key, api_base=api_base, engine=engine)
if '###' in response:
call_steps, _ = response.split('###')
else:
call_steps = response
pattern = r"(step\d+=)(\{[^}]*\})"
matches = re.findall(pattern, call_steps)
for match in matches:
step, content = match
content = content.replace("'", "\"") # Replace single quotes with double quotes.
print('==================')
print("\n\nstep:", step)
print('content:',content)
call_dict = json.loads(content)
print('It has parallel steps:', len(call_dict) / 4)
result_buffer_viz = parse_and_exe(call_dict, result_buffer_viz, parallel_step = '' )
output_text = output_text + step + ': ' + str(call_dict) + '\n\n'
if add_to_queue is not None:
add_to_queue(output_text)
finally_output = list(result_buffer_viz.values()) # plt.Axes
#
df = pd.DataFrame()
str_out = output_text + 'Finally result: '
for ax in finally_output:
if isinstance(ax[0], plt.Axes): # If the output is plt.Axes, display it.
plt.grid()
#plt.show()
str_out = str_out + ax[1]+ ':' + 'plt.Axes' + '\n\n'
#
elif isinstance(ax[0], pd.DataFrame):
df = ax[0]
str_out = str_out + ax[1]+ ':' + 'pd.DataFrame' + '\n\n'
else:
str_out = str_out + str(ax[1])+ ':' + str(ax[0]) + '\n\n'
#
print('===============================Summary Stage===========================================')
output_prompt = "请用第一人称总结一下整个任务规划和解决过程,并且输出结果,用[Task]表示每个规划任务,用\{function\}表示每个任务里调用的函数." + \
"示例1:###我用将您的问题拆分成两个任务,首先第一个任务[stock_task],我依次获取五粮液和贵州茅台从2013年5月20日到2023年5月20日的净资产回报率roe的时序数据. \n然后第二个任务[visualization_task],我用折线图绘制五粮液和贵州茅台从2013年5月20日到2023年5月20日的净资产回报率,并计算它们的平均值和中位数. \n\n在第一个任务中我分别使用了2个工具函数\{get_stock_code\},\{get_Financial_data_from_time_range\}获取到两只股票的roe数据,在第二个任务里我们使用折线图\{plot_stock_data\}工具函数来绘制他们的roe十年走势,最后并计算了两只股票十年ROE的中位数\{output_median_col\}和均值\{output_mean_col\}.\n\n最后贵州茅台的ROE的均值和中位数是\{\},{},五粮液的ROE的均值和中位数是\{\},\{\}###" + \
"示例2:###我用将您的问题拆分成两个任务,首先第一个任务[stock_task],我依次获取20230101到20230520这段时间北向资金每日净流入和每日累计流入时序数据,第二个任务是[visualization_task],因此我在同一张图里同时绘制北向资金20230101到20230520的每日净流入柱状图和每日累计流入的折线图 \n\n为了完成第一个任务中我分别使用了2个工具函数\{get_north_south_money\},\{calculate_stock_index\}分别获取到北上资金的每日净流入量和每日的累计净流入量,第二个任务里我们使用折线图\{plot_stock_data\}绘制来两个指标的变化走势.\n\n最后我们给您提供了包含两个指标的折线图和数据表格." + \
"示例3:###我用将您的问题拆分成两个任务,首先第一个任务[economic_task],我爬取了上市公司贵州茅台和其主营业务介绍信息. \n然后第二个任务[visualization_task],我用表格打印贵州茅台及其相关信息. \n\n在第一个任务中我分别使用了1个工具函数\{get_company_info\} 获取到贵州茅台的公司信息,在第二个任务里我们使用折线图\{print_save_table\}工具函数来输出表格.\n"
# output_result = send_chat_request("qwen-chat-72b", output_prompt + str_out + '###')
output_result = send_chat_request(model, output_prompt + str_out + '###', openai_key=openai_key, api_base=api_base,engine=engine)
print(output_result)
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
#
#
image = Image.open(buf)
return output_text, image, output_result, df
def gradio_interface(query, openai_key, openai_key_azure, api_base,engine):
# Create a new thread to run the function.
if openai_key.startswith('sk') and openai_key_azure == '':
print('send_official_call')
thread = MyThread(target=run, args=(query, add_to_queue, send_official_call, openai_key))
elif openai_key =='' and len(openai_key_azure)>0:
print('send_chat_request_Azure')
thread = MyThread(target=run, args=(query, add_to_queue, send_chat_request_Azure, openai_key_azure, api_base, engine))
thread.start()
placeholder_image = np.zeros((100, 100, 3), dtype=np.uint8) # Create a placeholder image.
placeholder_dataframe = pd.DataFrame() #
# Wait for the result of the calculate function and display the intermediate results simultaneously.
while thread.is_alive():
while not intermediate_results.empty():
yield intermediate_results.get(), placeholder_image, 'Running' , placeholder_dataframe # Use the yield keyword to return intermediate results in real-time
time.sleep(0.1) # Avoid excessive resource consumption.
finally_text, img, output, df = thread.get_result()
yield finally_text, img, output, df
# Return the final result.
def send_chat_request(model, prompt, send_chat_request_Azure = send_official_call, openai_key = '', api_base='', engine=''):
'''
Send request to LLMs(gpt, qwen-chat-72b, glm-3-turbo...)
:param model: the name of llm
:param prompt: prompt
:param send_chat_request_Azure(for gpt call)
:param openai_key(for gpt call)
:param api_base(for gpt call)
:param engine(for gpt call)
:return response: the response of llm
'''
if model=="gpt":
response = send_chat_request_Azure(prompt, openai_key=openai_key, api_base=api_base, engine=engine)
elif model=="qwen-chat-72b":
response = send_chat_request_qwen(prompt)# please set your api_key in lab_llms_call.py
# elif model=="glm-3-turbo":
# response = send_chat_request_glm(prompt)# please set your api_key in lab_llms_call.py
# Currently, smaller LLMs are unsupported
# elif model =="chatglm3-6b":
# response = send_chat_request_chatglm3_6b(prompt)# please set your api_key in lab_llms_call.py
# If you want to call the llm from local, you can try the following: internlm-chat-7b
# elif model=="internlm-chat-7b":
# response = send_chat_request_internlm_chat(prompt)
return response
instruction = '我想看看中国软件的2019年1月12日到2019年02月12日的收盘价的走势图'
if __name__ == '__main__':
# if using gpt, please set the following parameters
openai_call = send_official_call #
openai_key = os.getenv("OPENAI_KEY")
# set the llm model ("gpt","qwen-chat-72b")
model="gpt"
output, image, df , output_result = run(model,instruction, send_chat_request_Azure = openai_call, openai_key=openai_key, api_base='', engine='')
print(output_result)
plt.show()