-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathweight_methods.py
240 lines (182 loc) · 7.64 KB
/
weight_methods.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from abc import abstractmethod
import numpy as np
import torch
from torch import nn
def detach_to_numpy(tensor):
return tensor.detach().cpu().numpy()
class WeightingMethod:
@abstractmethod
def backward(self, losses, *args, **kwargs):
pass
class GradCosine(WeightingMethod):
"""Implementation of the unweighted version of the alg. in 'Adapting Auxiliary Losses Using Gradient Similarity'
"""
def __init__(self, main_task, **kwargs):
self.main_task = main_task
self.cosine_similarity = nn.CosineSimilarity(dim=0)
@staticmethod
def _flattening(grad):
return torch.cat(tuple(g.reshape(-1, ) for i, g in enumerate(grad)), axis=0)
def get_grad_cos_sim(self, grad1, grad2):
"""Computes cosine similarity of gradients after flattening of tensors.
"""
flat_grad1 = self._flattening(grad1)
flat_grad2 = self._flattening(grad2)
cosine = nn.CosineSimilarity(dim=0)(flat_grad1, flat_grad2)
return torch.clamp(cosine, -1, 1)
def get_grad(self, losses, shared_parameters):
"""
:param losses: Tensor of losses of shape (n_tasks, )
:param shared_parameters: model that are not task-specific parameters
:return:
"""
main_loss = losses[self.main_task]
aux_losses = torch.stack(tuple(l for i, l in enumerate(losses) if i != self.main_task))
main_grad = torch.autograd.grad(main_loss, shared_parameters, retain_graph=True)
# copy
grad = tuple(g.clone() for g in main_grad)
for loss in aux_losses:
aux_grad = torch.autograd.grad(loss, shared_parameters, retain_graph=True)
cosine = self.get_grad_cos_sim(main_grad, aux_grad)
if cosine > 0:
grad = tuple(g + ga for g, ga in zip(grad, aux_grad))
return grad
def backward(self, losses, shared_parameters, returns=True, **kwargs):
shared_grad = self.get_grad(
losses,
shared_parameters=shared_parameters
)
loss = torch.sum(torch.stack(losses))
loss.backward()
# update grads for shared weights
for p, g in zip(shared_parameters, shared_grad):
p.grad = g
if returns:
return loss
class GradNorm(WeightingMethod):
"""Implementation of 'GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks'.
Minor modifications of https://github.com/choltz95/MTGP-NN/blob/master/models.py#L80-L112. See also
https://github.com/hosseinshn/GradNorm/blob/master/GradNormv10.ipynb
"""
def __init__(self, n_tasks, alpha=1.5, device=None, **kwargs):
"""
:param n_tasks:
:param alpha: the default 1.5 is the same as in the paper for NYU experiments
"""
self.n_tasks = n_tasks
self.alpha = alpha
self.weights = torch.ones((n_tasks, ), requires_grad=True, device=device)
self.init_losses = None
def backward(self, losses, last_shared_params, returns=True, **kwargs):
"""Update gradients of the weights.
:param losses:
:param last_shared_params:
:param returns:
:return:
"""
if isinstance(losses, list):
losses = torch.stack(losses)
if self.init_losses is None:
self.init_losses = losses.detach().data
weighted_losses = self.weights * losses
total_weighted_loss = weighted_losses.sum()
# compute and retain gradients
total_weighted_loss.backward(retain_graph=True)
# zero the w_i(t) gradients since we want to update the weights using gradnorm loss
self.weights.grad = 0.0 * self.weights.grad
# compute grad norms
norms = []
for w_i, L_i in zip(self.weights, losses):
dlidW = torch.autograd.grad(L_i, last_shared_params, retain_graph=True)[0]
norms.append(torch.norm(w_i * dlidW))
norms = torch.stack(norms)
# compute the constant term without accumulating gradients
# as it should stay constant during back-propagation
with torch.no_grad():
# loss ratios
loss_ratios = losses / self.init_losses
# inverse training rate r(t)
inverse_train_rates = loss_ratios / loss_ratios.mean()
constant_term = norms.mean() * (inverse_train_rates ** self.alpha)
grad_norm_loss = (norms - constant_term).abs().sum()
self.weights.grad = torch.autograd.grad(grad_norm_loss, self.weights)[0]
# make sure sum_i w_i = T, where T is the number of tasks
with torch.no_grad():
renormalize_coeff = self.n_tasks / self.weights.sum()
self.weights *= renormalize_coeff
if returns:
return total_weighted_loss
class STL(WeightingMethod):
"""Single task learning
"""
def __init__(self, main_task, **kwargs):
self.main_task = main_task
def backward(self, losses, returns=True, **kwargs):
loss = losses[self.main_task]
loss.backward()
if returns:
return loss
class Uncertainty(WeightingMethod):
"""For `Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics`
"""
def __init__(self, **kwargs):
pass
def backward(self, losses, logsigmas, returns=True, **kwargs):
loss = sum(
[1 / (2 * torch.exp(logsigma)) * loss + logsigma / 2 for loss, logsigma in zip(losses, logsigmas)]
)
loss.backward()
if returns:
return loss
class DynamicWeightAverage(WeightingMethod):
"""Dynamic Weight Average from `End-to-End Multi-Task Learning with Attention`.
Source: https://github.com/lorenmt/mtan/blob/master/im2im_pred/model_segnet_split.py#L242
"""
def __init__(self, n_tasks, n_epochs, n_train_batch, temp=2., **kwargs):
self.n_tasks = n_tasks
self.temp = temp
self.avg_cost = np.zeros([n_epochs, n_tasks], dtype=np.float32)
self.lambda_weight = np.ones([n_tasks, n_epochs])
self.n_train_batch = n_train_batch
def backward(self, losses, epoch, returns=True, **kwargs):
cost = np.array([detach_to_numpy(l) for l in losses])
self.avg_cost[epoch, :] += cost / self.n_train_batch
if epoch == 0 or epoch == 1:
self.lambda_weight[:, epoch] = 1.0
else:
ws = [
self.avg_cost[epoch - 1, i] / self.avg_cost[epoch - 2, i]
for i in range(self.n_tasks)
]
for i in range(self.n_tasks):
self.lambda_weight[i, epoch] = self.n_tasks * np.exp(ws[i] / self.temp) /\
np.sum((np.exp(w / self.temp) for w in ws))
loss = torch.mean(sum(self.lambda_weight[i, epoch] * losses[i] for i in range(self.n_tasks)))
loss.backward()
if returns:
return loss
class Equal(WeightingMethod):
def __init__(self, **kwargs):
pass
def backward(self, losses, returns=True, **kwargs):
loss = torch.sum(torch.stack(losses))
loss.backward()
if returns:
return loss
class WeightMethods:
def __init__(self, method: str, **kwargs):
"""
:param method:
"""
baselines = dict(
stl=STL,
equal=Equal,
dwa=DynamicWeightAverage,
cosine=GradCosine,
gradnorm=GradNorm,
uncert=Uncertainty
)
assert method in list(baselines.keys()), 'unknown weight method'
self.method = baselines[method](**kwargs)
def backwards(self, losses, **kwargs):
return self.method.backward(losses, **kwargs)