-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain2.py
159 lines (123 loc) · 5.11 KB
/
main2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import torch
import matplotlib.pyplot as plt
from torch import nn, optim
from torchvision.models import ResNet18_Weights
from torch.utils.data import DataLoader
from torchvision.transforms import transforms
from torchvision import models
from models.CNN import CNN
from models.VGG import VGG
from models.ResNet import ResNet18, ResNet50
from dataset import SimpleImageFolderDataset
from draw import process_show
root_dir = './Images2/train'
root_dir2 = './Images2/test'
model_name = 'Pretrained resnet 120'
epoch_num = 20
# 定义变换操作
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
transforms.RandomHorizontalFlip(), # 随机水平镜像
transforms.RandomRotation(10),
])
if __name__ == '__main__':
# 创建Dataset实例
dataset = SimpleImageFolderDataset(root_dir, transform=transform)
dataset2 = SimpleImageFolderDataset(root_dir2, transform=transform)
# 创建DataLoader实例
data_loader1 = DataLoader(dataset, batch_size=16, shuffle=True, num_workers=4)
data_loader2 = DataLoader(dataset2, batch_size=8, shuffle=False, num_workers=4)
device = torch.device("cuda:0")
print("load the model...")
weights = ResNet18_Weights.DEFAULT # 使用默认的预训练权重
model = models.resnet18(weights=weights).to(device)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
# 先冻结卷积层,只训练全连接层
for param in model.parameters():
param.requires_grad = False
# 替换全连接层
fc_in_features = model.fc.in_features
model.fc = nn.Linear(fc_in_features, 120, bias=True).to(device) # 10类(斯坦福狗数据集)
optimizer = optim.SGD(model.fc.parameters(), lr=0.001, momentum=0.9, nesterov=True, weight_decay=5e-4)
loss_list = []
train_acclist = []
test_acclist = []
# 第一阶段:冻结卷积层,训练全连接层
for epoch in range(1, epoch_num + 1):
train_loss = 0
train_acc = 0
model.train()
for images, label in data_loader1:
img = images.to(device)
label = label.to(device)
out = model(img)
loss = criterion(out, label)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item()
_, pred = out.max(1)
num_correct = (pred == label).sum().item()
acc = num_correct / img.shape[0]
train_acc += acc
test_acc = 0
model.eval()
for images2, label2 in data_loader2:
img = images2.to(device)
label = label2.to(device)
out = model(img)
loss = criterion(out, label)
_, pred = out.max(1)
num_correct = (pred == label).sum().item()
acc = num_correct / img.shape[0]
test_acc += acc
train_acclist.append(train_acc / len(data_loader1))
test_acclist.append(test_acc / len(data_loader2))
loss_list.append(train_loss)
print("Epoch:", epoch, "loss:{:.4f} train acc:{:.4f} test acc:{:.4f}".format(
train_loss, train_acc / len(data_loader1), test_acc / len(data_loader2)))
# 第二阶段:解冻深层卷积层(layer4),继续训练
for param in model.layer4.parameters():
param.requires_grad = True
# 重新设置优化器,包含解冻的层
optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=0.0001, momentum=0.9, nesterov=True, weight_decay=5e-4)
# 继续训练
for epoch in range(epoch_num + 1, epoch_num + 21): # 继续训练20个epoch
train_loss = 0
train_acc = 0
model.train()
for images, label in data_loader1:
img = images.to(device)
label = label.to(device)
out = model(img)
loss = criterion(out, label)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item()
_, pred = out.max(1)
num_correct = (pred == label).sum().item()
acc = num_correct / img.shape[0]
train_acc += acc
test_acc = 0
model.eval()
for images2, label2 in data_loader2:
img = images2.to(device)
label = label2.to(device)
out = model(img)
loss = criterion(out, label)
_, pred = out.max(1)
num_correct = (pred == label).sum().item()
acc = num_correct / img.shape[0]
test_acc += acc
train_acclist.append(train_acc / len(data_loader1))
test_acclist.append(test_acc / len(data_loader2))
loss_list.append(train_loss)
print("Epoch:", epoch, "loss:{:.4f} train acc:{:.4f} test acc:{:.4f}".format(
train_loss, train_acc / len(data_loader1), test_acc / len(data_loader2)))
# 绘制训练过程中的损失和准确率曲线
process_show(model_name, list(range(1, epoch_num + 21)), loss_list, train_acclist, test_acclist)