-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfinal.py
154 lines (124 loc) · 6.12 KB
/
final.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import cv2
import numpy as np
from data.kitti_Dataset import Kitti_Dataset
import open3d as o3d
import time
from pathlib import Path
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--path_dataset', type=str, default=None, help='dir for the label data', required=True)
args = parser.parse_args()
# 根据偏航角计算旋转矩阵(逆时针旋转)
def rot_y(rotation_y):
cos = np.cos(rotation_y)
sin = np.sin(rotation_y)
R = np.array([[cos, 0, sin], [0, 1, 0], [-sin, 0, cos]])
return R
def draw_3dframeworks(vis,points):
position = points
points_box = np.transpose(position)
lines_box = np.array([[0, 1], [1, 2], [0, 3], [2, 3], [4, 5], [4, 7], [5, 6], [6, 7],
[0, 4], [1, 5], [2, 6], [3, 7], [0, 5], [1, 4]])
colors = np.array([[1., 0., 1.] for j in range(len(lines_box))])
line_set = o3d.geometry.LineSet()
line_set.points = o3d.utility.Vector3dVector(points_box)
line_set.lines = o3d.utility.Vector2iVector(lines_box)
line_set.colors = o3d.utility.Vector3dVector(colors)
vis.add_geometry(line_set)
render_option = vis.get_render_option()
render_option.point_size = 3
render_option.background_color = np.asarray([1, 1, 1])
# vis.get_render_option().load_from_json('renderoption.json')
param = o3d.io.read_pinhole_camera_parameters('BV_1440.json')
ctr = vis.get_view_control()
ctr.convert_from_pinhole_camera_parameters(param)
vis.update_renderer()
if __name__ == "__main__":
dir_path = Path(args.path_dataset)
# 读取训练集文件夹
split = "training"
dataset = Kitti_Dataset(dir_path, split=split)
vis = o3d.visualization.Visualizer()
vis.create_window(width=1440, height=1080)
index = 0
max_num = 100
# 逐张读入图片
while True:
img3_d = dataset.get_rgb(index)
calib = dataset.get_calib(index)
# 获取标签数据
obj = dataset.get_labels(index)
img3_d = dataset.get_rgb(index)
calib1 = dataset.get_calib(index)
pc = dataset.get_pcs(index)
point_cloud = o3d.geometry.PointCloud()
point_cloud.points = o3d.utility.Vector3dVector(pc)
point_cloud.paint_uniform_color([0, 121 / 255, 89 / 255])
vis.add_geometry(point_cloud)
# 逐个读入一副图片中的所有object的标签
for num in range(len(obj)):
if obj[num].name == "Car" or obj[num].name == "Pedestrian" or obj[num].name == "Cyclist":
# 阈值设置 ioc
if (obj[num].name == "Car" and obj[num].ioc >= 0.5) or obj[num].ioc > 0.5:
point_cloud = o3d.geometry.PointCloud()
# step1 得到rot_y旋转矩阵 3*3
R = rot_y(obj[num].rotation_y)
# 读取obect物体的高宽长信息
h, w, l = obj[num].dimensions[0], obj[num].dimensions[1], obj[num].dimensions[2]
x = [l / 2, l / 2, -l / 2, -l / 2, l / 2, l / 2, -l / 2, -l / 2]
y = [0, 0, 0, 0, -h, -h, -h, -h]
z = [w / 2, -w / 2, -w / 2, w / 2, w / 2, -w / 2, -w / 2, w / 2]
# 将xyz转化成3*8的矩阵
corner_3d = np.vstack([x, y, z])
# R * X
corner_3d = np.dot(R, corner_3d)
# 将该物体移动到相机坐标系下的原点处(涉及到坐标的移动,直接相加就行)
corner_3d[0, :] += obj[num].location[0]
corner_3d[1, :] += obj[num].location[1]
corner_3d[2, :] += obj[num].location[2]
# 将3d的bbox转换到2d坐标系中(需要用到内参矩阵)
corner_3d = np.vstack((corner_3d, np.zeros((1, corner_3d.shape[-1]))))
corner_2d = np.dot(calib.P2, corner_3d)
# 在像素坐标系下,横坐标x = corner_2d[0, :] /= corner_2d[2, :]
# 纵坐标的值以此类推
corner_2d[0, :] /= corner_2d[2, :]
corner_2d[1, :] /= corner_2d[2, :]
corner_2d = np.array(corner_2d, dtype=np.int)
# 三维坐标
corner_3d[-1][-1] = 1
inv_Tr = np.zeros_like(calib.Tr_velo_to_cam)
inv_Tr[0:3, 0:3] = np.transpose(calib.Tr_velo_to_cam[0:3, 0:3])
inv_Tr[0:3, 3] = np.dot(-np.transpose(calib.Tr_velo_to_cam[0:3, 0:3]), calib.Tr_velo_to_cam[0:3, 3])
Y = np.dot(inv_Tr, corner_3d)
draw_3dframeworks(vis, Y)
# 绘制立方体边界框
color = [255, 0, 255]
# 线宽
thickness = 2
if corner_2d.min() >= 0:
#绘制3d框
for corner_i in range(0, 4):
i, j = corner_i, (corner_i + 1) % 4
cv2.line(img3_d, (corner_2d[0, i], corner_2d[1, i]), (corner_2d[0, j], corner_2d[1, j]), color, thickness)
i, j = corner_i + 4, (corner_i + 1) % 4 + 4
cv2.line(img3_d, (corner_2d[0, i], corner_2d[1, i]), (corner_2d[0, j], corner_2d[1, j]), color, thickness)
i, j = corner_i, corner_i + 4
cv2.line(img3_d, (corner_2d[0, i], corner_2d[1, i]), (corner_2d[0, j], corner_2d[1, j]), color, thickness)
cv2.line(img3_d,(corner_2d[0, 0],corner_2d[1, 0]), (corner_2d[0, 5], corner_2d[1, 5]),color, thickness)
cv2.line(img3_d, (corner_2d[0, 1], corner_2d[1, 1]), (corner_2d[0, 4], corner_2d[1, 4]), color, thickness)
cv2.imshow("3dbox_img", img3_d)
vis.run()
vis.clear_geometries()
key = cv2.waitKey(100) & 0xFF
if key == ord('d'):
index += 1
if key == ord('a'):
index -= 1
if key == ord('q'):
break
if index >= max_num:
index = max_num - 1
if index < 0:
index = 0
# 读入图片信息
print(index)