-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmobilenetv2.py
240 lines (201 loc) · 9.32 KB
/
mobilenetv2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from __future__ import print_function
import torch
import torch.nn as nn
import os
import numpy as np
from tensorboardX import SummaryWriter
import layers
from progressbar import bar
from config import CIFAR100_params
WARNING = lambda x: '\033[1;31;2m WARNING: ' + x + '\033[0m'
# create model
class MobileNetv2(nn.Module):
def __init__(self, params):
super(MobileNetv2, self).__init__()
self.params = params
self.pb = bar() # hand-made progressbar
self.epoch = 0
self.test_epoch = 0
self.train_loss = 0
self.test_loss = 0
self.train_acc = 0
self.test_acc = 0
self.summary_writer = SummaryWriter(log_dir=self.params.summary_dir)
# build network
block = []
# conv layer 1
block.append(nn.Sequential(nn.Conv2d(3, self.params.c[0], 3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(self.params.c[0]),
nn.Dropout2d(self.params.dropout_prob, inplace=True),
nn.ReLU6()))
# conv layer 2-8
for i in range(7):
block.extend(layers.get_inverted_residual_block_arr(self.params.c[i], self.params.c[i+1],
t=self.params.t[i+1], s=self.params.s[i+1],
n=self.params.n[i+1]))
# conv layer 9
block.append(nn.Sequential(nn.Conv2d(self.params.c[-2], self.params.c[-1], 1, bias=False),
nn.BatchNorm2d(self.params.c[-1]),
nn.ReLU6()))
# pool and fc
block.append(nn.Sequential(nn.AvgPool2d(self.params.image_size//self.params.down_sample_rate),
nn.Dropout2d(self.params.dropout_prob, inplace=True),
nn.Conv2d(self.params.c[-1], self.params.num_class, 1, bias=True)))
self.network = nn.Sequential(*block).cuda()
# print(self.network)
# build loss
self.loss_fn = nn.CrossEntropyLoss().cuda()
# optimizer
self.opt = torch.optim.RMSprop(self.network.parameters(),
lr=self.params.base_lr,
momentum=self.params.momentum,
weight_decay=self.params.weight_decay)
# initialize
self.initialize()
# load data
self.load_checkpoint()
self.load_model()
def initialize(self):
"""Initializes the model parameters"""
for m in self.modules():
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
nn.init.xavier_normal_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def adjust_lr(self):
"""
Adjust learning rate at each epoch
"""
learning_rate = self.params.base_lr * self.params.lr_decay**self.epoch
for param_group in self.opt.param_groups:
param_group['lr'] = learning_rate
print('Change learning rate into %f' % (learning_rate))
self.summary_writer.add_scalar('learning_rate', learning_rate, self.epoch)
def train_one_epoch(self, dataset):
print('Training:')
# set train mode
self.network.train()
# prepare data
self.train_loss, self.train_acc = 0, 0
train_loader = torch.utils.data.DataLoader(dataset['train'],
batch_size=self.params.train_batch,
shuffle=self.params.shuffle,
num_workers=self.params.dataloader_workers)
train_size = len(dataset['train'])
if train_size % self.params.train_batch != 0:
total_batch = train_size//self.params.train_batch+1
else:
total_batch = train_size//self.params.train_batch
# train through dataset
for batch_idx, batch in enumerate(train_loader):
self.pb.click(batch_idx, total_batch)
image, label = batch
image_cuda, label_cuda = image.cuda(), label.cuda()
out = self.network(image_cuda).squeeze_()
loss = self.loss_fn(out, label_cuda)
# optimize
self.opt.zero_grad()
loss.backward()
self.opt.step()
# accuracy
acc = np.mean(np.argmax(out.cpu().detach().numpy(), axis=1) == label.numpy())
self.train_loss += loss.item()
self.train_acc += acc
self.pb.close()
self.train_loss /= total_batch
self.train_acc /= total_batch
# add to summary
self.summary_writer.add_scalar('train_loss', self.train_loss, self.epoch)
self.summary_writer.add_scalar('train_acc', self.train_acc, self.epoch)
def test_one_epoch(self, dataset):
print('Testing:')
# set mode test
self.network.eval()
# prepare data
val_loader = torch.utils.data.DataLoader(dataset['val'],
batch_size=self.params.test_batch,
shuffle=self.params.shuffle,
num_workers=self.params.dataloader_workers)
test_size = len(dataset['val'])
if test_size % self.params.test_batch != 0:
total_batch = test_size // self.params.test_batch + 1
else:
total_batch = test_size // self.params.test_batch
# test through dataset
for batch_idx, batch in enumerate(val_loader):
self.pb.click(batch_idx, total_batch)
image, label = batch
image_cuda, label_cuda = image.cuda(), label.cuda()
out = self.network(image_cuda).squeeze_()
loss = self.loss_fn(out, label_cuda)
acc = np.mean(np.argmax(out.cpu().detach().numpy(), axis=1) == label.numpy())
self.test_loss += loss.item()
self.test_acc += acc
self.pb.close()
self.test_loss /= total_batch
self.test_acc /= total_batch
# add to summary
self.summary_writer.add_scalar('test_loss', self.test_loss, self.epoch)
self.summary_writer.add_scalar('test_acc', self.test_acc, self.epoch)
def save_checkpoint(self):
save_dict = {'epoch': self.epoch,
'state_dict': self.network.state_dict(),
'optimizer': self.opt.state_dict()}
torch.save(save_dict, self.params.ckpt_dir+'Checkpoint_epoch_%d.pth.tar' % self.epoch)
def load_checkpoint(self):
if self.params.resume_from is not None and os.path.exists(self.params.resume_from):
try:
print('Loading Checkpoint at %s' % self.params.resume_from)
ckpt = torch.load(self.params.resume_from)
self.epoch = ckpt['epoch']
self.network.load_state_dict(ckpt['state_dict'])
self.opt.load_state_dict(ckpt['optimizer'])
print('Checkpoint Loaded!')
print('Current Epoch: %d' % self.epoch)
except:
print(WARNING('Cannot load checkpoint from %s. Continue optimizing......' % self.params.resume_from))
else:
print(WARNING('Checkpoint not exists. Continue optimizing......'))
def load_model(self):
if self.params.pre_trained_from is not None and os.path.exists(self.params.pre_trained_from):
try:
print('Loading Pre-trained Model at %s' % self.params.pre_trained_from)
pretrain = torch.load(self.params.pre_trained_from)
self.network.load_state_dict(pretrain)
print('Pre-trained Model Loaded!')
except:
print(WARNING('Cannot load pre-trained model. Continue optimizing......'))
else:
print(WARNING('Model not exits. Continue optimizing......'))
def train_n_epoch(self, dataset):
"""
Train network for n epoch, n is defined in params
:param dataset: dataset
"""
for epoch in range(self.params.num_epoch):
self.epoch += 1
print('-' * 20 + 'Epoch.' + str(self.epoch) + '-' * 20)
self.train_one_epoch(dataset)
print('\tTrain acc: %.2f, Train loss: %.4f' % (self.train_acc*100, self.train_loss))
# should save
if self.epoch % self.params.save_every == 0:
self.save_checkpoint()
# test every params.test_every epoch
if self.params.should_test:
if self.test_epoch % self.params.test_every == 0:
self.test_one_epoch(dataset)
print('\tTest acc: %.2f, Test loss: %.4f' % (self.test_acc*100, self.test_loss))
# save model
if self.params.should_save:
if self.epoch % self.params.save_every == 0:
self.save_checkpoint()
self.adjust_lr()
""" TEST """
if __name__ == '__main__':
params = CIFAR100_params()
params.dataset_root = '/home/ubuntu/cifar100'
net = MobileNetv2(params)
net.save_checkpoint()