-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist_separate_training.py
121 lines (92 loc) · 3.38 KB
/
mnist_separate_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import tensorflow as tf
from tensorflow.keras import datasets, layers, optimizers, Sequential, metrics
from tensorflow import keras
import os
import numpy as np
import sys
sys.path.append("../src")
from dopamine import Dopamine, dopamine
assert tf.__version__.startswith('2.')
tf.random.set_seed(22)
np.random.seed(22)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
batch_size = 200
num_classes = 10
shuffle_size = 60000
epochs = 20
validation_freq = 1
dopamine_batch_size = batch_size
def preprocess(x, y):
"""
x is a simple image, not a batch
"""
x = tf.cast(x, dtype=tf.float32) / 255.
# x = tf.reshape(x, [28*28])
y = tf.cast(y, dtype=tf.int32)
y = tf.one_hot(y, depth=num_classes)
return x, y
def load_data():
(x, y), (x_val, y_val) = datasets.mnist.load_data()
db = tf.data.Dataset.from_tensor_slices((x, y))
db = db.map(preprocess).shuffle(shuffle_size).batch(batch_size)
ds_val = tf.data.Dataset.from_tensor_slices((x_val, y_val))
ds_val = ds_val.map(preprocess).batch(batch_size)
return db, ds_val
def create_params():
optimizer = tf.keras.optimizers.SGD(lr=0.25, momentum=0.6)
losser = tf.losses.CategoricalCrossentropy(from_logits=True)
acc = tf.keras.metrics.CategoricalAccuracy()
return optimizer, losser, acc
def tran_step(epoch, model, db_train, trainable_variables):
optimizer, losser, acc = create_params()
for step, (x, y) in enumerate(db_train):
with tf.GradientTape() as tape:
logits = model(x)
loss = losser(y, logits)
# print('---ff', logits)
grads = tape.gradient(loss, trainable_variables)
optimizer.apply_gradients(zip(grads, trainable_variables))
acc.update_state(y, logits)
print('epoch:', epoch, 'step:', step, 'loss:', loss.numpy(), 'acc:', acc.result().numpy())
return losser, acc
def split_dopamine_trainable_variables(layers):
dtv = []
otv = []
for l in layers:
vs = l.trainable_variables
if isinstance(l, Dopamine):
dtv.extend(vs)
else:
otv.extend(vs)
return dtv, otv
def main():
db_train, db_test = load_data()
lys = [
layers.Reshape(target_shape=(784,), input_shape=(28, 28)),
layers.Dense(256, activation='relu'),
Dopamine(input_shape=[256], batch_size=dopamine_batch_size),
layers.Dense(64, activation='relu'),
Dopamine(input_shape=[64], batch_size=dopamine_batch_size, use_bias=True),
layers.Dense(10)
]
model = Sequential(lys)
# optimizer= tf.keras.optimizers.Adam(lr=0.025)
optimizer, losser, acc = create_params()
model.compile(optimizer=optimizer,
loss=losser,
metrics=[acc]
)
model.summary()
# dopamine_variables = lys[2].trainable_variables + lys[4].trainable_variables
# other_variables = lys[0].trainable_variables + lys[1].trainable_variables + lys[3].trainable_variables
# + lys[5].trainable_variables
dopamine_variables, other_variables = split_dopamine_trainable_variables(lys)
print(len(dopamine_variables), len(other_variables))
for task in range(8):
for epoch in range(3):
tran_step(epoch, model, db_train, other_variables)
for epoch in range(1):
tran_step(epoch, model, db_train, dopamine_variables)
model.evaluate(db_test)
if __name__ == '__main__':
main()