forked from huichen/wukong
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindexer.go
594 lines (533 loc) · 18.6 KB
/
indexer.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
package core
import (
"log"
"math"
"sort"
"sync"
"github.com/huichen/wukong/types"
"github.com/huichen/wukong/utils"
)
// 索引器
type Indexer struct {
// 从搜索键到文档列表的反向索引
// 加了读写锁以保证读写安全
tableLock struct {
sync.RWMutex
table map[string]*KeywordIndices
docsState map[uint64]int // nil: 表示无状态记录,0: 存在于索引中,1: 等待删除,2: 等待加入
}
addCacheLock struct {
sync.RWMutex
addCachePointer int
addCache types.DocumentsIndex
}
removeCacheLock struct {
sync.RWMutex
removeCachePointer int
removeCache types.DocumentsId
}
initOptions types.IndexerInitOptions
initialized bool
// 这实际上是总文档数的一个近似
numDocuments uint64
// 所有被索引文本的总关键词数
totalTokenLength float32
// 每个文档的关键词长度
docTokenLengths map[uint64]float32
}
// 反向索引表的一行,收集了一个搜索键出现的所有文档,按照DocId从小到大排序。
type KeywordIndices struct {
// 下面的切片是否为空,取决于初始化时IndexType的值
docIds []uint64 // 全部类型都有
frequencies []float32 // IndexType == FrequenciesIndex
locations [][]int // IndexType == LocationsIndex
}
// 初始化索引器
func (indexer *Indexer) Init(options types.IndexerInitOptions) {
if indexer.initialized {
log.Fatal("索引器不能初始化两次")
}
options.Init()
indexer.initOptions = options
indexer.initialized = true
indexer.tableLock.table = make(map[string]*KeywordIndices)
indexer.tableLock.docsState = make(map[uint64]int)
indexer.addCacheLock.addCache = make([]*types.DocumentIndex, indexer.initOptions.DocCacheSize)
indexer.removeCacheLock.removeCache = make([]uint64, indexer.initOptions.DocCacheSize*2)
indexer.docTokenLengths = make(map[uint64]float32)
}
func (indexer *Indexer) Close() {
indexer.initialized = false
indexer.docTokenLengths = nil
for _, ki := range indexer.tableLock.table {
ki.docIds = nil
ki.frequencies = nil
ki.locations = nil
}
indexer.tableLock.table = nil
indexer.tableLock.docsState = nil
indexer.addCacheLock.addCache.Close()
indexer.addCacheLock.addCache = nil
indexer.removeCacheLock.removeCache = nil
}
// 从KeywordIndices中得到第i个文档的DocId
func (indexer *Indexer) getDocId(ti *KeywordIndices, i int) uint64 {
return ti.docIds[i]
}
// 得到KeywordIndices中文档总数
func (indexer *Indexer) getIndexLength(ti *KeywordIndices) int {
return len(ti.docIds)
}
// 向 ADDCACHE 中加入一个文档
func (indexer *Indexer) AddDocumentToCache(document *types.DocumentIndex, forceUpdate bool) {
if !indexer.initialized {
log.Fatal("索引器尚未初始化")
}
indexer.addCacheLock.Lock()
if document != nil {
indexer.addCacheLock.addCache[indexer.addCacheLock.addCachePointer] = document
indexer.addCacheLock.addCachePointer++
}
if indexer.addCacheLock.addCachePointer >= indexer.initOptions.DocCacheSize || forceUpdate {
indexer.tableLock.Lock()
position := 0
for i := 0; i < indexer.addCacheLock.addCachePointer; i++ {
docIndex := indexer.addCacheLock.addCache[i]
if docState, ok := indexer.tableLock.docsState[docIndex.DocId]; ok && docState <= 1 {
// ok && docState == 0 表示存在于索引中,需先删除再添加
// ok && docState == 1 表示不一定存在于索引中,等待删除,需先删除再添加
if position != i {
indexer.addCacheLock.addCache[position], indexer.addCacheLock.addCache[i] =
indexer.addCacheLock.addCache[i], indexer.addCacheLock.addCache[position]
}
if docState == 0 {
indexer.removeCacheLock.Lock()
indexer.removeCacheLock.removeCache[indexer.removeCacheLock.removeCachePointer] =
docIndex.DocId
indexer.removeCacheLock.removeCachePointer++
indexer.removeCacheLock.Unlock()
indexer.tableLock.docsState[docIndex.DocId] = 1
indexer.numDocuments--
}
position++
} else if !ok {
indexer.tableLock.docsState[docIndex.DocId] = 2
}
}
indexer.tableLock.Unlock()
if indexer.RemoveDocumentToCache(0, forceUpdate) {
// 只有当存在于索引表中的文档已被删除,其才可以重新加入到索引表中
position = 0
}
addCachedDocuments := indexer.addCacheLock.addCache[position:indexer.addCacheLock.addCachePointer]
indexer.addCacheLock.addCachePointer = position
indexer.addCacheLock.Unlock()
sort.Sort(addCachedDocuments)
indexer.AddDocuments(&addCachedDocuments)
} else {
indexer.addCacheLock.Unlock()
}
}
// 向反向索引表中加入 ADDCACHE 中所有文档
func (indexer *Indexer) AddDocuments(documents *types.DocumentsIndex) {
if !indexer.initialized {
log.Fatal("索引器尚未初始化")
}
indexer.tableLock.Lock()
defer indexer.tableLock.Unlock()
indexPointers := make(map[string]int, len(indexer.tableLock.table))
// DocId 递增顺序遍历插入文档保证索引移动次数最少
for i, document := range *documents {
if i < len(*documents)-1 && (*documents)[i].DocId == (*documents)[i+1].DocId {
// 如果有重复文档加入,因为稳定排序,只加入最后一个
continue
}
if docState, ok := indexer.tableLock.docsState[document.DocId]; ok && docState == 1 {
// 如果此时 docState 仍为 1,说明该文档需被删除
// docState 合法状态为 nil & 2,保证一定不会插入已经在索引表中的文档
continue
}
// 更新文档关键词总长度
if document.TokenLength != 0 {
indexer.docTokenLengths[document.DocId] = float32(document.TokenLength)
indexer.totalTokenLength += document.TokenLength
}
docIdIsNew := true
for _, keyword := range document.Keywords {
indices, foundKeyword := indexer.tableLock.table[keyword.Text]
if !foundKeyword {
// 如果没找到该搜索键则加入
ti := KeywordIndices{}
switch indexer.initOptions.IndexType {
case types.LocationsIndex:
ti.locations = [][]int{keyword.Starts}
case types.FrequenciesIndex:
ti.frequencies = []float32{keyword.Frequency}
}
ti.docIds = []uint64{document.DocId}
indexer.tableLock.table[keyword.Text] = &ti
continue
}
// 查找应该插入的位置,且索引一定不存在
position, _ := indexer.searchIndex(
indices, indexPointers[keyword.Text], indexer.getIndexLength(indices)-1, document.DocId)
indexPointers[keyword.Text] = position
switch indexer.initOptions.IndexType {
case types.LocationsIndex:
indices.locations = append(indices.locations, []int{})
copy(indices.locations[position+1:], indices.locations[position:])
indices.locations[position] = keyword.Starts
case types.FrequenciesIndex:
indices.frequencies = append(indices.frequencies, float32(0))
copy(indices.frequencies[position+1:], indices.frequencies[position:])
indices.frequencies[position] = keyword.Frequency
}
indices.docIds = append(indices.docIds, 0)
copy(indices.docIds[position+1:], indices.docIds[position:])
indices.docIds[position] = document.DocId
}
// 更新文章状态和总数
if docIdIsNew {
indexer.tableLock.docsState[document.DocId] = 0
indexer.numDocuments++
}
}
}
// 向 REMOVECACHE 中加入一个待删除文档
// 返回值表示文档是否在索引表中被删除
func (indexer *Indexer) RemoveDocumentToCache(docId uint64, forceUpdate bool) bool {
if !indexer.initialized {
log.Fatal("索引器尚未初始化")
}
indexer.removeCacheLock.Lock()
if docId != 0 {
indexer.tableLock.Lock()
if docState, ok := indexer.tableLock.docsState[docId]; ok && docState == 0 {
indexer.removeCacheLock.removeCache[indexer.removeCacheLock.removeCachePointer] = docId
indexer.removeCacheLock.removeCachePointer++
indexer.tableLock.docsState[docId] = 1
indexer.numDocuments--
} else if ok && docState == 2 {
// 删除一个等待加入的文档
indexer.tableLock.docsState[docId] = 1
} else if !ok {
// 若文档不存在,则无法判断其是否在 addCache 中,需避免这样的操作
}
indexer.tableLock.Unlock()
}
if indexer.removeCacheLock.removeCachePointer > 0 &&
(indexer.removeCacheLock.removeCachePointer >= indexer.initOptions.DocCacheSize ||
forceUpdate) {
removeCachedDocuments := indexer.removeCacheLock.removeCache[:indexer.removeCacheLock.removeCachePointer]
indexer.removeCacheLock.removeCachePointer = 0
indexer.removeCacheLock.Unlock()
sort.Sort(removeCachedDocuments)
indexer.RemoveDocuments(&removeCachedDocuments)
return true
}
indexer.removeCacheLock.Unlock()
return false
}
// 向反向索引表中删除 REMOVECACHE 中所有文档
func (indexer *Indexer) RemoveDocuments(documents *types.DocumentsId) {
if !indexer.initialized {
log.Fatal("索引器尚未初始化")
}
indexer.tableLock.Lock()
defer indexer.tableLock.Unlock()
// 更新文档关键词总长度,删除文档状态
for _, docId := range *documents {
indexer.totalTokenLength -= indexer.docTokenLengths[docId]
delete(indexer.docTokenLengths, docId)
delete(indexer.tableLock.docsState, docId)
}
for keyword, indices := range indexer.tableLock.table {
indicesTop, indicesPointer := 0, 0
documentsPointer := sort.Search(
len(*documents), func(i int) bool { return (*documents)[i] >= indices.docIds[0] })
// 双指针扫描,进行批量删除操作
for documentsPointer < len(*documents) && indicesPointer < indexer.getIndexLength(indices) {
if indices.docIds[indicesPointer] < (*documents)[documentsPointer] {
if indicesTop != indicesPointer {
switch indexer.initOptions.IndexType {
case types.LocationsIndex:
indices.locations[indicesTop] = indices.locations[indicesPointer]
case types.FrequenciesIndex:
indices.frequencies[indicesTop] = indices.frequencies[indicesPointer]
}
indices.docIds[indicesTop] = indices.docIds[indicesPointer]
}
indicesTop++
indicesPointer++
} else if indices.docIds[indicesPointer] == (*documents)[documentsPointer] {
indicesPointer++
documentsPointer++
} else {
documentsPointer++
}
}
if indicesTop != indicesPointer {
switch indexer.initOptions.IndexType {
case types.LocationsIndex:
indices.locations = append(
indices.locations[:indicesTop], indices.locations[indicesPointer:]...)
case types.FrequenciesIndex:
indices.frequencies = append(
indices.frequencies[:indicesTop], indices.frequencies[indicesPointer:]...)
}
indices.docIds = append(
indices.docIds[:indicesTop], indices.docIds[indicesPointer:]...)
}
if len(indices.docIds) == 0 {
delete(indexer.tableLock.table, keyword)
}
}
}
// 查找包含全部搜索键(AND操作)的文档
// 当docIds不为nil时仅从docIds指定的文档中查找
func (indexer *Indexer) Lookup(
tokens []string, labels []string, docIds map[uint64]bool, countDocsOnly bool) (docs []types.IndexedDocument, numDocs int) {
if !indexer.initialized {
log.Fatal("索引器尚未初始化")
}
if indexer.numDocuments == 0 {
return
}
numDocs = 0
// 合并关键词和标签为搜索键
keywords := make([]string, len(tokens)+len(labels))
copy(keywords, tokens)
copy(keywords[len(tokens):], labels)
indexer.tableLock.RLock()
defer indexer.tableLock.RUnlock()
table := make([]*KeywordIndices, len(keywords))
for i, keyword := range keywords {
indices, found := indexer.tableLock.table[keyword]
if !found {
// 当反向索引表中无此搜索键时直接返回
return
} else {
// 否则加入反向表中
table[i] = indices
}
}
// 当没有找到时直接返回
if len(table) == 0 {
return
}
// 归并查找各个搜索键出现文档的交集
// 从后向前查保证先输出DocId较大文档
indexPointers := make([]int, len(table))
for iTable := 0; iTable < len(table); iTable++ {
indexPointers[iTable] = indexer.getIndexLength(table[iTable]) - 1
}
// 平均文本关键词长度,用于计算BM25
avgDocLength := indexer.totalTokenLength / float32(indexer.numDocuments)
for ; indexPointers[0] >= 0; indexPointers[0]-- {
// 以第一个搜索键出现的文档作为基准,并遍历其他搜索键搜索同一文档
baseDocId := indexer.getDocId(table[0], indexPointers[0])
if docIds != nil {
if _, found := docIds[baseDocId]; !found {
continue
}
}
iTable := 1
found := true
for ; iTable < len(table); iTable++ {
// 二分法比简单的顺序归并效率高,也有更高效率的算法,
// 但顺序归并也许是更好的选择,考虑到将来需要用链表重新实现
// 以避免反向表添加新文档时的写锁。
// TODO: 进一步研究不同求交集算法的速度和可扩展性。
position, foundBaseDocId := indexer.searchIndex(table[iTable],
0, indexPointers[iTable], baseDocId)
if foundBaseDocId {
indexPointers[iTable] = position
} else {
if position == 0 {
// 该搜索键中所有的文档ID都比baseDocId大,因此已经没有
// 继续查找的必要。
return
} else {
// 继续下一indexPointers[0]的查找
indexPointers[iTable] = position - 1
found = false
break
}
}
}
if found {
if docState, ok := indexer.tableLock.docsState[baseDocId]; !ok || docState != 0 {
continue
}
indexedDoc := types.IndexedDocument{}
// 当为LocationsIndex时计算关键词紧邻距离
if indexer.initOptions.IndexType == types.LocationsIndex {
// 计算有多少关键词是带有距离信息的
numTokensWithLocations := 0
for i, t := range table[:len(tokens)] {
if len(t.locations[indexPointers[i]]) > 0 {
numTokensWithLocations++
}
}
if numTokensWithLocations != len(tokens) {
if !countDocsOnly {
docs = append(docs, types.IndexedDocument{
DocId: baseDocId,
})
}
numDocs++
//当某个关键字对应多个文档且有lable关键字存在时,若直接break,将会丢失相当一部分搜索结果
continue
}
// 计算搜索键在文档中的紧邻距离
tokenProximity, tokenLocations := computeTokenProximity(table[:len(tokens)], indexPointers, tokens)
indexedDoc.TokenProximity = int32(tokenProximity)
indexedDoc.TokenSnippetLocations = tokenLocations
// 添加TokenLocations
indexedDoc.TokenLocations = make([][]int, len(tokens))
for i, t := range table[:len(tokens)] {
indexedDoc.TokenLocations[i] = t.locations[indexPointers[i]]
}
}
// 当为LocationsIndex或者FrequenciesIndex时计算BM25
if indexer.initOptions.IndexType == types.LocationsIndex ||
indexer.initOptions.IndexType == types.FrequenciesIndex {
bm25 := float32(0)
d := indexer.docTokenLengths[baseDocId]
for i, t := range table[:len(tokens)] {
var frequency float32
if indexer.initOptions.IndexType == types.LocationsIndex {
frequency = float32(len(t.locations[indexPointers[i]]))
} else {
frequency = t.frequencies[indexPointers[i]]
}
// 计算BM25
if len(t.docIds) > 0 && frequency > 0 && indexer.initOptions.BM25Parameters != nil && avgDocLength != 0 {
// 带平滑的idf
idf := float32(math.Log2(float64(indexer.numDocuments)/float64(len(t.docIds)) + 1))
k1 := indexer.initOptions.BM25Parameters.K1
b := indexer.initOptions.BM25Parameters.B
bm25 += idf * frequency * (k1 + 1) / (frequency + k1*(1-b+b*d/avgDocLength))
}
}
indexedDoc.BM25 = float32(bm25)
}
indexedDoc.DocId = baseDocId
if !countDocsOnly {
docs = append(docs, indexedDoc)
}
numDocs++
}
}
return
}
// 二分法查找indices中某文档的索引项
// 第一个返回参数为找到的位置或需要插入的位置
// 第二个返回参数标明是否找到
func (indexer *Indexer) searchIndex(
indices *KeywordIndices, start int, end int, docId uint64) (int, bool) {
// 特殊情况
if indexer.getIndexLength(indices) == start {
return start, false
}
if docId < indexer.getDocId(indices, start) {
return start, false
} else if docId == indexer.getDocId(indices, start) {
return start, true
}
if docId > indexer.getDocId(indices, end) {
return end + 1, false
} else if docId == indexer.getDocId(indices, end) {
return end, true
}
// 二分
var middle int
for end-start > 1 {
middle = (start + end) / 2
if docId == indexer.getDocId(indices, middle) {
return middle, true
} else if docId > indexer.getDocId(indices, middle) {
start = middle
} else {
end = middle
}
}
return end, false
}
// 计算搜索键在文本中的紧邻距离
//
// 假定第 i 个搜索键首字节出现在文本中的位置为 P_i,长度 L_i
// 紧邻距离计算公式为
//
// ArgMin(Sum(Abs(P_(i+1) - P_i - L_i)))
//
// 具体由动态规划实现,依次计算前 i 个 token 在每个出现位置的最优值。
// 选定的 P_i 通过 tokenLocations 参数传回。
func computeTokenProximity(table []*KeywordIndices, indexPointers []int, tokens []string) (
minTokenProximity int, tokenLocations []int) {
minTokenProximity = -1
tokenLocations = make([]int, len(tokens))
var (
currentLocations, nextLocations []int
currentMinValues, nextMinValues []int
path [][]int
)
// 初始化路径数组
path = make([][]int, len(tokens))
for i := 1; i < len(path); i++ {
path[i] = make([]int, len(table[i].locations[indexPointers[i]]))
}
// 动态规划
currentLocations = table[0].locations[indexPointers[0]]
currentMinValues = make([]int, len(currentLocations))
for i := 1; i < len(tokens); i++ {
nextLocations = table[i].locations[indexPointers[i]]
nextMinValues = make([]int, len(nextLocations))
for j, _ := range nextMinValues {
nextMinValues[j] = -1
}
var iNext int
for iCurrent, currentLocation := range currentLocations {
if currentMinValues[iCurrent] == -1 {
continue
}
for iNext+1 < len(nextLocations) && nextLocations[iNext+1] < currentLocation {
iNext++
}
update := func(from int, to int) {
if to >= len(nextLocations) {
return
}
value := currentMinValues[from] + utils.AbsInt(nextLocations[to]-currentLocations[from]-len(tokens[i-1]))
if nextMinValues[to] == -1 || value < nextMinValues[to] {
nextMinValues[to] = value
path[i][to] = from
}
}
// 最优解的状态转移只发生在左右最接近的位置
update(iCurrent, iNext)
update(iCurrent, iNext+1)
}
currentLocations = nextLocations
currentMinValues = nextMinValues
}
// 找出最优解
var cursor int
for i, value := range currentMinValues {
if value == -1 {
continue
}
if minTokenProximity == -1 || value < minTokenProximity {
minTokenProximity = value
cursor = i
}
}
// 从路径倒推出最优解的位置
for i := len(tokens) - 1; i >= 0; i-- {
if i != len(tokens)-1 {
cursor = path[i+1][cursor]
}
tokenLocations[i] = table[i].locations[indexPointers[i]][cursor]
}
return
}