Skip to content

10xScale Agentflow is a Python framework for building, orchestrating, and managing multi-agent systems. Designed for flexibility and scalability, PyAgenity enables developers to create intelligent agents that collaborate, communicate, and solve complex tasks together.

License

Notifications You must be signed in to change notification settings

10xHub/Agentflow

Repository files navigation

10xScale Agentflow

PyPI License Python Coverage

10xScale Agentflow is a lightweight Python framework for building intelligent agents and orchestrating multi-agent workflows. It's an LLM-agnostic orchestration tool that works with any LLM providerβ€”use LiteLLM, native SDKs from OpenAI, Google Gemini, Anthropic Claude, or any other provider. You choose your LLM library; 10xScale Agentflow provides the workflow orchestration.


✨ Key Features

  • 🎯 LLM-Agnostic Orchestration - Works with any LLM provider (LiteLLM, OpenAI, Gemini, Claude, native SDKs)
  • πŸ€– Multi-Agent Workflows - Build complex agent systems with your choice of orchestration patterns
  • πŸ“Š Structured Responses - Get content, optional thinking, and usage in a standardized format
  • 🌊 Streaming Support - Real-time incremental responses with delta updates
  • πŸ”§ Tool Integration - Native support for function calling, MCP, Composio, and LangChain tools with parallel execution
  • πŸ”€ LangGraph-Inspired Engine - Flexible graph orchestration with nodes, conditional edges, and control flow
  • πŸ’Ύ State Management - Built-in persistence with in-memory and PostgreSQL+Redis checkpointers
  • πŸ”„ Human-in-the-Loop - Pause/resume execution for approval workflows and debugging
  • πŸš€ Production-Ready - Event publishing (Console, Redis, Kafka, RabbitMQ), metrics, and observability
  • 🧩 Dependency Injection - Clean parameter injection for tools and nodes
  • πŸ“¦ Prebuilt Patterns - React, RAG, Swarm, Router, MapReduce, SupervisorTeam, and more

Installation

Basic installation with uv (recommended):

uv pip install 10xscale-agentflow

Or with pip:

pip install 10xscale-agentflow

Optional Dependencies:

10xScale Agentflow supports optional dependencies for specific functionality:

# PostgreSQL + Redis checkpointing
pip install 10xscale-agentflow[pg_checkpoint]

# MCP (Model Context Protocol) support
pip install 10xscale-agentflow[mcp]

# Composio tools (adapter)
pip install 10xscale-agentflow[composio]

# LangChain tools (registry-based adapter)
pip install 10xscale-agentflow[langchain]

# Individual publishers
pip install 10xscale-agentflow[redis]     # Redis publisher
pip install 10xscale-agentflow[kafka]     # Kafka publisher
pip install 10xscale-agentflow[rabbitmq]  # RabbitMQ publisher

# Multiple extras
pip install 10xscale-agentflow[pg_checkpoint,mcp,composio,langchain]

Environment Setup

Set your LLM provider API key:

export OPENAI_API_KEY=sk-...  # for OpenAI models
# or
export GEMINI_API_KEY=...     # for Google Gemini
# or
export ANTHROPIC_API_KEY=...  # for Anthropic Claude

If you have a .env file, it will be auto-loaded (via python-dotenv).

--- ## πŸ’‘ Simple Example

Here's a minimal React agent with tool calling:

from dotenv import load_dotenv
from litellm import acompletion

from agentflow.checkpointer import InMemoryCheckpointer
from agentflow.graph import StateGraph, ToolNode
from agentflow.state.agent_state import AgentState
from agentflow.utils import Message
from agentflow.utils.constants import END
from agentflow.utils.converter import convert_messages

load_dotenv()


# Define a tool with dependency injection
def get_weather(
        location: str,
        tool_call_id: str | None = None,
        state: AgentState | None = None,
) -> Message:
    """Get the current weather for a specific location."""
    res = f"The weather in {location} is sunny"
    return Message.tool_message(
        content=res,
        tool_call_id=tool_call_id,
    )


# Create tool node
tool_node = ToolNode([get_weather])


# Define main agent node
async def main_agent(state: AgentState):
    prompts = "You are a helpful assistant. Use tools when needed."

    messages = convert_messages(
        system_prompts=[{"role": "system", "content": prompts}],
        state=state,
    )

    # Check if we need tools
    if (
            state.context
            and len(state.context) > 0
            and state.context[-1].role == "tool"
    ):
        response = await acompletion(
            model="gemini/gemini-2.5-flash",
            messages=messages,
        )
    else:
        tools = await tool_node.all_tools()
        response = await acompletion(
            model="gemini/gemini-2.5-flash",
            messages=messages,
            tools=tools,
        )

    return response


# Define routing logic
def should_use_tools(state: AgentState) -> str:
    """Determine if we should use tools or end."""
    if not state.context or len(state.context) == 0:
        return "TOOL"

    last_message = state.context[-1]

    if (
            hasattr(last_message, "tools_calls")
            and last_message.tools_calls
            and len(last_message.tools_calls) > 0
    ):
        return "TOOL"

    return END


# Build the graph
graph = StateGraph()
graph.add_node("MAIN", main_agent)
graph.add_node("TOOL", tool_node)

graph.add_conditional_edges(
    "MAIN",
    should_use_tools,
    {"TOOL": "TOOL", END: END},
)

graph.add_edge("TOOL", "MAIN")
graph.set_entry_point("MAIN")

# Compile and run
app = graph.compile(checkpointer=InMemoryCheckpointer())

inp = {"messages": [Message.from_text("What's the weather in New York?")]}
config = {"thread_id": "12345", "recursion_limit": 10}

res = app.invoke(inp, config=config)

for msg in res["messages"]:
    print(msg)

How to run the example locally

  1. Install dependencies (recommended in a virtualenv):
pip install -r requirements.txt
# or if you use uv
uv pip install -r requirements.txt
  1. Set your LLM provider API key (for example OpenAI):
export OPENAI_API_KEY="sk-..."
# or create a .env with the key and the script will load it automatically
  1. Run the example script:
python examples/react/react_weather_agent.py

Notes:

  • The example uses litellm's acompletion function β€” set model to a provider/model available in your environment (for example gemini/gemini-2.5-flash or other supported model strings).
  • InMemoryCheckpointer is for demo/testing only. Replace with a persistent checkpointer for production.

Example: MCP Integration

10xScale Agentflow supports integration with Model Context Protocol (MCP) servers, allowing you to connect external tools and services. The example in examples/react-mcp/ demonstrates how to integrate MCP tools with your agent.

First, create an MCP server (see examples/react-mcp/server.py):

from fastmcp import FastMCP

mcp = FastMCP("My MCP Server")

@mcp.tool(
    description="Get the weather for a specific location",
)
def get_weather(location: str) -> dict:
    return {
        "location": location,
        "temperature": "22Β°C",
        "description": "Sunny",
    }

if __name__ == "__main__":
    mcp.run(transport="streamable-http")

Then, integrate MCP tools into your agent (from examples/react-mcp/react-mcp.py):

from typing import Any

from dotenv import load_dotenv
from fastmcp import Client
from litellm import acompletion

from agentflow.checkpointer import InMemoryCheckpointer
from agentflow.graph import StateGraph, ToolNode
from agentflow.state.agent_state import AgentState
from agentflow.utils import Message
from agentflow.utils.constants import END
from agentflow.utils.converter import convert_messages

load_dotenv()

checkpointer = InMemoryCheckpointer()

config = {
    "mcpServers": {
        "weather": {
            "url": "http://127.0.0.1:8000/mcp",
            "transport": "streamable-http",
        },
    }
}

client_http = Client(config)

# Initialize ToolNode with MCP client
tool_node = ToolNode(functions=[], client=client_http)


async def main_agent(state: AgentState):
    prompts = "You are a helpful assistant."

    messages = convert_messages(
        system_prompts=[{"role": "system", "content": prompts}],
        state=state,
    )

    # Get all available tools (including MCP tools)
    tools = await tool_node.all_tools()

    response = await acompletion(
        model="gemini/gemini-2.0-flash",
        messages=messages,
        tools=tools,
    )
    return response


def should_use_tools(state: AgentState) -> str:
    """Determine if we should use tools or end the conversation."""
    if not state.context or len(state.context) == 0:
        return "TOOL"

    last_message = state.context[-1]

    if (
            hasattr(last_message, "tools_calls")
            and last_message.tools_calls
            and len(last_message.tools_calls) > 0
    ):
        return "TOOL"

    if last_message.role == "tool" and last_message.tool_call_id is not None:
        return END

    return END


graph = StateGraph()
graph.add_node("MAIN", main_agent)
graph.add_node("TOOL", tool_node)

graph.add_conditional_edges(
    "MAIN",
    should_use_tools,
    {"TOOL": "TOOL", END: END},
)

graph.add_edge("TOOL", "MAIN")
graph.set_entry_point("MAIN")

app = graph.compile(checkpointer=checkpointer)

# Run the agent
inp = {"messages": [Message.from_text("Please call the get_weather function for New York City")]}
config = {"thread_id": "12345", "recursion_limit": 10}

res = app.invoke(inp, config=config)

for i in res["messages"]:
    print(i)

How to run the MCP example:

  1. Install MCP dependencies:
pip install 10xscale-agentflow[mcp]
# or
uv pip install 10xscale-agentflow[mcp]
  1. Start the MCP server in one terminal:
cd examples/react-mcp
python server.py
  1. Run the MCP-integrated agent in another terminal:
python examples/react-mcp/react-mcp.py

Example: Streaming Agent

10xScale Agentflow supports streaming responses for real-time interaction. The example in examples/react_stream/stream_react_agent.py demonstrates different streaming modes and configurations.

import asyncio
import logging

from dotenv import load_dotenv
from litellm import acompletion

from agentflow.checkpointer import InMemoryCheckpointer
from agentflow.graph import StateGraph, ToolNode
from agentflow.state.agent_state import AgentState
from agentflow.utils import Message, ResponseGranularity
from agentflow.utils.constants import END
from agentflow.utils.converter import convert_messages

load_dotenv()
checkpointer = InMemoryCheckpointer()


def get_weather(
        location: str,
        tool_call_id: str,
        state: AgentState,
) -> Message:
    """Get weather with injectable parameters."""
    res = f"The weather in {location} is sunny."
    return Message.tool_message(
        content=res,
        tool_call_id=tool_call_id,
    )


tool_node = ToolNode([get_weather])


async def main_agent(state: AgentState, config: dict):
    prompts = "You are a helpful assistant. Answer conversationally. Use tools when needed."

    messages = convert_messages(
        system_prompts=[{"role": "system", "content": prompts}],
        state=state,
    )

    is_stream = config.get("is_stream", False)

    if (
            state.context
            and len(state.context) > 0
            and state.context[-1].role == "tool"
    ):
        response = await acompletion(
            model="gemini/gemini-2.5-flash",
            messages=messages,
            stream=is_stream,
        )
    else:
        tools = await tool_node.all_tools()
        response = await acompletion(
            model="gemini/gemini-2.5-flash",
            messages=messages,
            tools=tools,
            stream=is_stream,
        )

    return response


def should_use_tools(state: AgentState) -> str:
    if not state.context or len(state.context) == 0:
        return "TOOL"

    last_message = state.context[-1]

    if (
            hasattr(last_message, "tools_calls")
            and last_message.tools_calls
            and len(last_message.tools_calls) > 0
    ):
        return "TOOL"

    if last_message.role == "tool" and last_message.tool_call_id is not None:
        return END

    return END


graph = StateGraph()
graph.add_node("MAIN", main_agent)
graph.add_node("TOOL", tool_node)

graph.add_conditional_edges(
    "MAIN",
    should_use_tools,
    {"TOOL": "TOOL", END: END},
)

graph.add_edge("TOOL", "MAIN")
graph.set_entry_point("MAIN")

app = graph.compile(checkpointer=checkpointer)


async def run_stream_test():
    inp = {"messages": [Message.from_text("Call get_weather for Tokyo, then reply.")]}
    config = {"thread_id": "stream-1", "recursion_limit": 10}

    logging.info("--- streaming start ---")
    stream_gen = app.astream(
        inp,
        config=config,
        response_granularity=ResponseGranularity.LOW,
    )
    async for chunk in stream_gen:
        print(chunk.model_dump(), end="\n", flush=True)


if __name__ == "__main__":
    asyncio.run(run_stream_test())

Run the streaming example:

python examples/react_stream/stream_react_agent.py

⚑ Parallel Tool Execution

10xScale Agentflow automatically executes multiple tool calls in parallel when an LLM requests multiple tools simultaneously. This dramatically improves performance for I/O-bound operations.

Benefits

  • Faster Response Times: Multiple API calls execute concurrently
  • Better Resource Utilization: Don't wait for one tool to finish before starting the next
  • Seamless Integration: Works automatically with existing code - no changes needed

Example Performance

# LLM requests 3 tools simultaneously:
# - get_weather("NYC")    # Takes 1.0s
# - get_news("tech")      # Takes 1.5s
# - get_stock("AAPL")     # Takes 0.8s

# Sequential execution: 1.0 + 1.5 + 0.8 = 3.3 seconds
# Parallel execution:   max(1.0, 1.5, 0.8) = 1.5 seconds ⚑

See the [parallel tool execution documentation](https://10xhub.github.io/10xScale Agentflow/Concept/graph/tools/#parallel-tool-execution) for more details.


🎯 Use Cases & Patterns

10xScale Agentflow includes prebuilt agent patterns for common scenarios:

πŸ€– Agent Types

  • React Agent - Reasoning and acting with tool calls
  • RAG Agent - Retrieval-augmented generation
  • Guarded Agent - Input/output validation and safety
  • Plan-Act-Reflect - Multi-step reasoning

πŸ”€ Orchestration Patterns

  • Router Agent - Route queries to specialized agents
  • Swarm - Dynamic multi-agent collaboration
  • SupervisorTeam - Hierarchical agent coordination
  • MapReduce - Parallel processing and aggregation
  • Sequential - Linear workflow chains
  • Branch-Join - Parallel branches with synchronization

πŸ”¬ Advanced Patterns

  • Deep Research - Multi-level research and synthesis
  • Network - Complex agent networks

See the documentation for complete examples.


πŸ”§ Development

For Library Users

Install 10xScale Agentflow as shown above. The pyproject.toml contains all runtime dependencies.

For Contributors

# Clone the repository
git clone https://github.com/10xhub/10xScale Agentflow.git
cd 10xScale Agentflow

# Create virtual environment
python -m venv .venv
source .venv/bin/activate  # On Windows: .venv\Scripts\activate

# Install dev dependencies
pip install -r requirements-dev.txt
# or
uv pip install -r requirements-dev.txt

# Run tests
make test
# or
pytest -q

# Build docs
make docs-serve  # Serves at http://127.0.0.1:8000

# Run examples
cd examples/react
python react_sync.py

Development Tools

The project uses:

  • pytest for testing (with async support)
  • ruff for linting and formatting
  • mypy for type checking
  • mkdocs with Material theme for documentation
  • coverage for test coverage reports

See pyproject.dev.toml for complete tool configurations.


πŸ—ΊοΈ Roadmap

  • βœ… Core graph engine with nodes and edges
  • βœ… State management and checkpointing
  • βœ… Tool integration (MCP, Composio, LangChain)
  • βœ… Parallel tool execution for improved performance
  • βœ… Streaming and event publishing
  • βœ… Human-in-the-loop support
  • βœ… Prebuilt agent patterns
  • 🚧 Agent-to-Agent (A2A) communication protocols
  • 🚧 Remote node execution for distributed processing
  • 🚧 Enhanced observability and tracing
  • 🚧 More persistence backends (Redis, DynamoDB)
  • 🚧 Parallel/branching strategies
  • 🚧 Visual graph editor

πŸ“„ License

MIT License - see [LICENSE](https://github.com/10xhub/10xScale Agentflow/blob/main/LICENSE) for details.


πŸ”— Links & Resources


πŸ™ Contributing

Contributions are welcome! Please see our [GitHub repository](https://github.com/10xhub/10xScale Agentflow) for:

  • Issue reporting and feature requests
  • Pull request guidelines
  • Development setup instructions
  • Code style and testing requirements

πŸ’¬ Support


Ready to build intelligent agents? Check out the [documentation](https://10xhub.github.io/10xScale Agentflow/) to get started!

About

10xScale Agentflow is a Python framework for building, orchestrating, and managing multi-agent systems. Designed for flexibility and scalability, PyAgenity enables developers to create intelligent agents that collaborate, communicate, and solve complex tasks together.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Contributors 3

  •  
  •  
  •