Skip to content

13269562786/graph_distillation

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Graph Distillation

This is the code for the paper Graph Distillation for Action Detection with Privileged Modalities presented at ECCV 2018

Please note that this is not an officially supported Google product.

In this work, we propose a method termed graph distillation that incorporates rich privileged information from a large-scale multi- modal dataset in the source domain, and improves the learning in the target domain where training data and modalities are scarce.

If you find this code useful in your research then please cite

@inproceedings{luo2018graph,
  title={Graph Distillation for Action Detection with Privileged Modalities},
  author={Luo, Zelun and Hsieh, Jun-Ting and Jiang, Lu and Niebles, Juan Carlos and Fei-Fei, Li},
  booktitle={ECCV},
  year={2018}
}

Setup

All code was developed and tested on Ubuntu 16.04 with Python 3.6 and PyTorch 0.3.1.

Pretrained Models

We can download pretrained models used in our paper running the script:

sh scripts/download_models.sh

Or alternatively you can download Cloud SDK

  1. Install Google Cloud SDK (https://cloud.google.com/sdk/install)
  2. Copy the pretrained model using the following commands:
gsutil -m cp -r gs://graph_distillation/ckpt .

Running Models

We can use the scripts in scripts/ to train models on different modalities.

Classification

See classification/run.py for descriptions of the arguments.

scripts/train_ntu_rgbd.sh trains a model for a single modality.

scripts/train_ntu_rgbd_distillation.sh trains model with graph distillation. The modality being trained is specified by the xfer_to argument, and the modalities to distill from is specified in the modalities argument.

Detection

See detection/run.py for descriptions of the arguments. Note that the visual_encoder_ckpt_path argument is the pretrained visual encoder checkpoint, which should be from training classification models.

scripts/train_pku_mmd.sh trains a model for a single modality.

scripts/train_pku_mmd_distillation.sh trains model with graph distillation. The modality being trained is specified by the xfer_to argument, and the modalities to distill from is specified in the modalities argument.

About

Graph Distillation for Action Detection

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 94.1%
  • Shell 5.9%