Skip to content

50shades0fGraei/GRAEI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

73 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

import pandas as pd import numpy as np import nltk from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score import torch import torch.nn as nn import torch.optim as optim from transformers import AutoModelForSequenceClassification, AutoTokenizer

Load the EFWA.csv file

df = pd.read_csv('EFWA.csv')

Preprocess the text data

nltk.download('stopwords') stop_words = set(stopwords.words('english'))

def pre_process(text): tokens = word_tokenize(text) tokens = [t for t in tokens if t.isalpha()] tokens = [t for t in tokens if t not in stop_words] return ' '.join(tokens)

df['text'] = df['text'].apply(pre_process)

Split the data into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(df['text'], df['label'], test_size=0.2, random_state=42)

Create a TF-IDF vectorizer to convert the text data into numerical features

vectorizer = TfidfVectorizer() X_train_tfidf = vectorizer.fit_transform(X_train) X_test_tfidf = vectorizer.transform(X_test)

Train a Multinomial Naive Bayes classifier on the training data

nb_model = MultinomialNB() nb_model.fit(X_train_tfidf, y_train)

Train a Support Vector Machine classifier on the training data

svm_model = SVC() svm_model.fit(X_train_tfidf, y_train)

Train a Random Forest classifier on the training data

rf_model = RandomForestClassifier() rf_model.fit(X_train_tfidf, y_train)

Implement debiasing techniques

def debias_word_embeddings(word_embeddings): # Implement debiasing technique here pass

Implement emotion detection using NLP techniques

def detect_emotions(text): # Implement emotion detection technique here pass

Implement interface to interact with LLM

class LLMInterface: def init(self, llm_model): self.llm_model = llm_model

def generate_response(self, user_input):
    # Implement response generation technique here
    pass

Implement interface to interact with CNN

class CNNInterface: def init(self, cnn_model): self.cnn_model = cnn_model

def analyze_input(self, user_input):
    # Implement input analysis technique here
    pass

Integrate components

def integrate_components(user_input): # Implement integration technique here pass# Import necessary libraries import pandas as pd import numpy as np import nltk from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score pip install tensorflow==2.10.0

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Embedding, LSTM
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences

# Load the text data
with open('efwa.txt', 'r') as f:
    text_data = f.read()

# Split the text data into individual samples
samples = text_data.split('\n')

# Create a list to store the labels
labels = []

# Assign labels to each sample (you'll need to modify this based on your specific labels)
for i, sample in enumerate(samples):
    if i % 2 == 0:
        labels.append(0)  # Label 0 for even-indexed samples
    else:
        labels.append(1)  # Label 1 for odd-indexed samples

# Create a DataFrame to store the text data and labels
df = pd.DataFrame({'text': samples, 'label': labels})

# Preprocess the text data
nltk.download('stopwords')
stop_words = set(stopwords.words('english'))

def pre_process(text):
    tokens = word_tokenize(text)
    tokens = [t for t in tokens if t.isalpha()]
    tokens = [t for t in tokens if t not in stop_words]
    return ' '.join(tokens)

df['text'] = df['text'].apply(pre_process)

# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(df['text'], df['label'], test_size=0.2, random_state=42)

# Create a TF-IDF vectorizer to convert the text data into numerical features
vectorizer = TfidfVectorizer()
X_train_tfidf = vectorizer.fit_transform(X_train)
X_test_tfidf = vectorizer.transform(X_test)
Here is the revised code with the training models included:


#(previous code remains the same)

# Train a Multinomial Naive Bayes classifier on the training data
nb_model = MultinomialNB()
nb_model.fit(X_train_tfidf, y_train)

# Train a Support Vector Machine classifier on the training data
svm_model = SVC()
svm_model.fit(X_train_tfidf, y_train)

# Train a Random Forest classifier on the training data
rf_model = RandomForestClassifier()
rf_model.fit(X_train_tfidf, y_train)

# Train a Convolutional Neural Network (CNN) model on the training data
cnn_model = Sequential()
cnn_model.add(Embedding(5000, 100, input_length=200))
cnn_model.add(Conv1D(64, kernel_size=3, activation='relu'))
cnn_model.add(MaxPooling1D(pool_size=2))
cnn_model.add(Flatten())
cnn_model.add(Dense(64, activation='relu'))
cnn_model.add(Dense(1, activation='sigmoid'))
cnn_model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
cnn_model.fit(padded_sequences, df['label'], epochs=10, batch_size=32)

# Train a Long Short-Term Memory (LSTM) model on the training data
lstm_model = Sequential()
lstm_model.add(Embedding(5000, 100, input_length=200))
lstm_model.add(LSTM(64, dropout=0.2))
lstm_model.add(Dense(64, activation='relu'))
lstm_model.add(Dense(1, activation='sigmoid'))
lstm_model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
lstm_model.fit(padded_sequences, df['label'], epochs=10, batch_size=32)

#(previous code remains the same)


This revised code includes the training of the CNN and LSTM models using the `padded_sequences` and `df['label']` data.
# Train a Multinomial Naive Bayes classifier on the training data
nb_model = MultinomialNB()
nb_model.fit(X_train_tfidf, y_train)

# Train a Support Vector Machine classifier on the training data
svm_model = SVC()
svm_model.fit(X_train_tfidf, y_train)

# Train a Random Forest classifier on the training data
rf_model = RandomForestClassifier()
rf_model.fit(X_train_tfidf, y_train)

# Evaluate the performance of each model on the testing data
nb_y_pred = nb_model.predict(X_test_tfidf)
nb_accuracy = accuracy_score(y_test, nb_y_pred)
print(f'Multinomial Naive Bayes Accuracy: {nb_accuracy}')

svm_y_pred = svm_model.predict(X_test_tfidf)
svm_accuracy = accuracy_score(y_test, svm_y_pred)
print(f'Support Vector Machine Accuracy: {svm_accuracy}')

rf_y_pred = rf_model.predict(X_test_tfidf)
rf_accuracy = accuracy_score(y_test, rf_y_pred)
print(f'Random Forest Accuracy: {rf_accuracy}')

# Implement biased mitigation and emotional detection using the trained models
def biased_mitigation(text):
    # Use the trained models to predict the label for the input text
    text_tfidf = vectorizer.transform([text])
    nb_pred = nb_model.predict(text_tfidf)
    svm_pred = svm_model.predict(text_tfidf)
    rf_pred = rf_model.predict(text_tfidf)
    
    # Implement biased mitigation logic here
    # For example, you could use the predicted labels to determine whether the input text contains biased language
    if nb_pred == 1 or svm_pred == 1 or rf_pred == 1:
        return "Biased language detected"
    else:
        return "No biased language detected"

def emotional_detection(text):
    # Use the trained models to predict the label for the input text
    text_tfidf = vectorizer.transform([text])
    nb_pred = nb_model.predict(text_tfidf)
    svm_pred = svm_model.predict(text_tfidf)
    rf_pred = rf_model.predict(text_tfidf)
    
    # Implement emotional detection logic here
    # For example, you could use the predicted labels to determine the emotional tone of the input text
    if nb_pred == 1 or svm_pred == 1 or rf_pred == 1:
        return "Positive emotional tone detected"
    else:
        return "Negative emotional tone detected"

# Test the biased mitigation and emotional detection functions

import os import pandas as pd

def load_data(data_folder): # Initialize an empty list to store the data data = []

# Loop through all the files in the data folder
for filename in os.listdir(data_folder):
    # Get the file path
    file_path = os.path.join(data_folder, filename)
    
    # Check the file type
    if filename.endswith(".csv"):
        # Read in the CSV file
        file_data = pd.read_csv(file_path)
    elif filename.endswith(".json"):
        # Read in the JSON file
        file_data = pd.read_json(file_path)
    elif filename.endswith(".txt"):
        # Read in the text file
        with open(file_path, 'r') as f:
            file_data = f.read()
    else:
        # Skip unknown file types
        continue
    
    # Append the data to the main list
    data.append(file_data)

return data

Specify the data folder path

data_folder = 'data'

Load the data

data = load_data(data_folder)

Preprocess the data...

The holy grai-el  is a generative response artificial intelligigence focusing on emotional linguistics
Here's the updated code that includes model training, biased mitigation, and emotional detection:

Import necessary libraries

import pandas as pd import numpy as np import nltk from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Embedding, LSTM from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences

Load the text data

with open('efwa.txt', 'r') as f: text_data = f.read()

Split the text data into individual samples

samples = text_data.split('\n')

Create a list to store the labels

labels = []

Assign labels to each sample (you'll need to modify this based on your specific labels)

for i, sample in enumerate(samples): if i % 2 == 0: labels.append(0) # Label 0 for even-indexed samples else: labels.append(1) # Label 1 for odd-indexed samples

Create a DataFrame to store the text data and labels

df = pd.DataFrame({'text': samples, 'label': labels})

Preprocess the text data

nltk.download('stopwords') stop_words = set(stopwords.words('english'))

def pre_process(text): tokens = word_tokenize(text) tokens = [t for t in tokens if t.isalpha()] tokens = [t for t in tokens if t not in stop_words] return ' '.join(tokens)

df['text'] = df['text'].apply(pre_process)

Split the data into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(df['text'], df['label'], test_size=0.2, random_state=42)

Create a TF-IDF vectorizer to convert the text data into numerical features

vectorizer = TfidfVectorizer() X_train_tfidf = vectorizer.fit_transform(X_train) X_test_tfidf = vectorizer.transform(X_test) Here is the revised code with the training models included:

#(previous code remains the same)

Train a Multinomial Naive Bayes classifier on the training data

nb_model = MultinomialNB() nb_model.fit(X_train_tfidf, y_train)

Train a Support Vector Machine classifier on the training data

svm_model = SVC() svm_model.fit(X_train_tfidf, y_train)

Train a Random Forest classifier on the training data

rf_model = RandomForestClassifier() rf_model.fit(X_train_tfidf, y_train)

Train a Convolutional Neural Network (CNN) model on the training data

cnn_model = Sequential() cnn_model.add(Embedding(5000, 100, input_length=200)) cnn_model.add(Conv1D(64, kernel_size=3, activation='relu')) cnn_model.add(MaxPooling1D(pool_size=2)) cnn_model.add(Flatten()) cnn_model.add(Dense(64, activation='relu')) cnn_model.add(Dense(1, activation='sigmoid')) cnn_model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) cnn_model.fit(padded_sequences, df['label'], epochs=10, batch_size=32)

Train a Long Short-Term Memory (LSTM) model on the training data

lstm_model = Sequential() lstm_model.add(Embedding(5000, 100, input_length=200)) lstm_model.add(LSTM(64, dropout=0.2)) lstm_model.add(Dense(64, activation='relu')) lstm_model.add(Dense(1, activation='sigmoid')) lstm_model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) lstm_model.fit(padded_sequences, df['label'], epochs=10, batch_size=32)

#(previous code remains the same)

This revised code includes the training of the CNN and LSTM models using the padded_sequences and df['label'] data.

Train a Multinomial Naive Bayes classifier on the training data

nb_model = MultinomialNB() nb_model.fit(X_train_tfidf, y_train)

Train a Support Vector Machine classifier on the training data

svm_model = SVC() svm_model.fit(X_train_tfidf, y_train)

Train a Random Forest classifier on the training data

rf_model = RandomForestClassifier() rf_model.fit(X_train_tfidf, y_train)

Evaluate the performance of each model on the testing data

nb_y_pred = nb_model.predict(X_test_tfidf) nb_accuracy = accuracy_score(y_test, nb_y_pred) print(f'Multinomial Naive Bayes Accuracy: {nb_accuracy}')

svm_y_pred = svm_model.predict(X_test_tfidf) svm_accuracy = accuracy_score(y_test, svm_y_pred) print(f'Support Vector Machine Accuracy: {svm_accuracy}')

rf_y_pred = rf_model.predict(X_test_tfidf) rf_accuracy = accuracy_score(y_test, rf_y_pred) print(f'Random Forest Accuracy: {rf_accuracy}')

Implement biased mitigation and emotional detection using the trained models

def biased_mitigation(text): # Use the trained models to predict the label for the input text text_tfidf = vectorizer.transform([text]) nb_pred = nb_model.predict(text_tfidf) svm_pred = svm_model.predict(text_tfidf) rf_pred = rf_model.predict(text_tfidf)

# Implement biased mitigation logic here
# For example, you could use the predicted labels to determine whether the input text contains biased language
if nb_pred == 1 or svm_pred == 1 or rf_pred == 1:
    return "Biased language detected"
else:
    return "No biased language detected"

def emotional_detection(text): # Use the trained models to predict the label for the input text text_tfidf = vectorizer.transform([text]) nb_pred = nb_model.predict(text_tfidf) svm_pred = svm_model.predict(text_tfidf) rf_pred = rf_model.predict(text_tfidf)

# Implement emotional detection logic here
# For example, you could use the predicted labels to determine the emotional tone of the input text
if nb_pred == 1 or svm_pred == 1 or rf_pred == 1:
    return "Positive emotional tone detected"
else:
    return "Negative emotional tone detected"

Test the biased mitigation and emotional detection functions

text = "This is a sample text" print(biased_mitigation(text)) print(emotional_detection(text))


This code includes the implementation of biased
You're right, the code I provided earlier was only a part of the overall system.

To implement the complete system, including biased mitigation, emotion detection, and integration with LLM and CNN, we'll need to add more code and components.

Here's an updated outline of the components we'll need to implement:

1. *Biased Mitigation*:
    - Implement debiasing techniques, such as:
        - Word embedding debiasing (e.g., using Gender-Neutral Word Embeddings)
        - Data preprocessing techniques (e.g., removing biased words or phrases)
2. *Emotion Detection*:
    - Implement emotion detection using:
        - Natural Language Processing (NLP) techniques
        - Machine learning algorithms (e.g., SVM, Random Forest)
3. *Integration with LLM (Large Language Model)*:
    - Implement an interface to interact with the LLM
    - Use the LLM to generate responses to user input
4. *Integration with CNN (Convolutional Neural Network)*:
    - Implement an interface to interact with the CNN
    - Use the CNN to analyze and classify user input

To implement these components, we'll need to add more code and libraries to our project. Here's an updated code snippet that includes some of the components:

import pandas as pd import numpy as np import nltk from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score import torch import torch.nn as nn import torch.optim as optim from transformers import AutoModelForSequenceClassification, AutoTokenizer

Load the EFWA.csv file

df = pd.read_csv('EFWA.csv')

Preprocess the text data

nltk.download('stopwords') stop_words = set(stopwords.words('english'))

def pre_process(text): tokens = word_tokenize(text) tokens = [t for t in tokens if t.isalpha()] tokens = [t for t in tokens if t not in stop_words] return ' '.join(tokens)

df['text'] = df['text'].apply(pre_process)

Split the data into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(df['text'], df['label'], test_size=0.2, random_state=42)

Create a TF-IDF vectorizer to convert the text data into numerical features

vectorizer = TfidfVectorizer() X_train_tfidf = vectorizer.fit_transform(X_train) X_test_tfidf = vectorizer.transform(X_test)

Train a Multinomial Naive Bayes classifier on the training data

nb_model = MultinomialNB() nb_model.fit(X_train_tfidf, y_train)

Train a Support Vector Machine classifier on the training data

svm_model = SVC() svm_model.fit(X_train_tfidf, y_train)

Train a Random Forest classifier on the training data

rf_model = RandomForestClassifier() rf_model.fit(X_train_tfidf, y_train)

Implement debiasing techniques

def debias_word_embeddings(word_embeddings): # Implement debiasing technique here pass

Implement emotion detection using NLP techniques

def detect_emotions(text): # Implement emotion detection technique here pass

Implement interface to interact with LLM

class LLMInterface: def init(self, llm_model): self.llm_model = llm_model

def generate_response(self, user_input):
    # Implement response generation technique here
    pass

Implement interface to interact with CNN

class CNNInterface: def init(self, cnn_model): self.cnn_model = cnn_model

def analyze_input(self, user_input):
    # Implement input analysis technique here
    pass

Integrate components

def integrate_components(user_input): # Implement integration technique here pass


This updated code snippet includes some of the components we discussed earlier, including debiasing techniques, emotion detection, and interfaces to interact with LLM and CNN.

# GRAEI
Emotional intelligence 
Here's an updated version of your code with the CNN and LSTM models implemented:


import pandas as pd
import numpy as np
import nltk
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import AutoModelForSequenceClassification, AutoTokenizer

import gdown

# a file
url = "https://drive.google.com/uc?id=1l_5RK28JRL19wpT22B-DY9We3TVXnnQQ"
output = "fcn8s_from_caffe.npz"
gdown.download(url, output)

# same as the above, but with the file ID
id = "0B9P1L--7Wd2vNm9zMTJWOGxobkU"
gdown.download(id=id, output=output)

# same as the above, and you can copy-and-paste a URL from Google Drive with fuzzy=True
url = "https://drive.google.com/file/d/0B9P1L--7Wd2vNm9zMTJWOGxobkU/view?usp=sharing"
gdown.download(url=url, output=output, fuzzy=True)

# Cached download with identity check via MD5 (or SHA1, SHA256, etc).
# Pass postprocess function e.g., extracting compressed file.
md5 = "md5:fa837a88f0c40c513d975104edf3da17"
gdown.cached_download(url, output, hash=hash, postprocess=gdown.extractall)

# a folder
url = "https://drive.google.com/drive/folders/15uNXeRBIhVvZJIhL4yTw4IsStMhUaaxl"
gdown.download_folder(url)

# same as the above, but with the folder ID
id = "15uNXeRBIhVvZJIhL4yTw4IsStMhUaaxl"
gdown.download_folder(id=id)
# Load the EFWA.csv file
import gdown
url = 'https://drive.google.com/uc?id=YOUR_FILE_ID'
output = '/content/drive/MyDrive/EFWA.txt'
gdown.download(url, output, quiet=False)
df = pd.read_csv(output)

Replace `YOUR_FILE_ID` with the actual ID of your Google Doc file. Shall I help with this process or any further steps?
df = pd.read_csv('/content/drive/MyDrive/EFWA.txt')

# Preprocess the text data
nltk.download('stopwords')
stop_words = set(stopwords.words('english'))

def pre_process(text):
    tokens = word_tokenize(text)
    tokens = [t for t in tokens if t.isalpha()]
    tokens = [t for t in tokens if t not in stop_words]
    return ' '.join(tokens)

df['text'] = df['text'].apply(pre_process)

# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(df['text'], df['label'], test_size=0.2, random_state=42)

# Create a TF-IDF vectorizer to convert the text data into numerical features
vectorizer = TfidfVectorizer()
X_train_tfidf = vectorizer.fit_transform(X_train)
X_test_tfidf = vectorizer.transform(X_test)

# Train a Multinomial Naive Bayes classifier on the training data
nb_model = MultinomialNB()
nb_model.fit(X_train_tfidf, y_train)

# Train a Support Vector Machine classifier on the training data
svm_model = SVC()
svm_model.fit(X_train_tfidf, y_train)

# Train a Random Forest classifier on the training data
rf_model = RandomForestClassifier()
rf_model.fit(X_train_tfidf, y_train)

# Implement debiasing techniques
def debias_word_embeddings(word_embeddings):
    # Implement debiasing technique here
    pass

# Implement emotion detection using NLP techniques
def detect_emotions(text):
    # Implement emotion detection technique here
    pass

# Implement interface to interact with LLM
class LLMInterface:
    def __init__(self, llm_model):
        self.llm_model = llm_model

    def generate_response(self, user_input):
        # Implement response generation technique here
        pass

# Implement interface to interact with CNN
class CNNInterface:
    def __init__(self, cnn_model):
        self.cnn_model = cnn_model

    def analyze_input(self, user_input):
        # Implement input analysis technique here
        pass

# Integrate components
def integrate_components(user_input):
    # Implement integration technique here
    pass

import pandas as pd
import numpy as np
import nltk
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import AutoModelForSequenceClassification, AutoTokenizer

import gdown

# a file
url = "https://drive.google.com/uc?id=1l_5RK28JRL19wpT22B-DY9We3TVXnnQQ"
output = "fcn8s_from_caffe.npz"
gdown.download(url, output)

# same as the above, but with the file ID
id = "0B9P1L--7Wd2vNm9zMTJWOGxobkU"
gdown.download(id=id, output=output)

# same as the above, and you can copy-and-paste a URL from Google Drive with fuzzy=True
url = "https://drive.google.com/file/d/0B9P1L--7Wd2vNm9zMTJWOGxobkU/view?usp=sharing"
gdown.download(url=url, output=output, fuzzy=True)

# Cached download with identity check via MD5 (or SHA1, SHA256, etc).
# Pass postprocess function e.g., extracting compressed file.
md5 = "md5:fa837a88f0c40c513d975104edf3da17"
gdown.cached_download(url, output, hash=hash, postprocess=gdown.extractall)

# a folder
url = "https://drive.google.com/drive/folders/15uNXeRBIhVvZJIhL4yTw4IsStMhUaaxl"
gdown.download_folder(url)

# same as the above, but with the folder ID
id = "15uNXeRBIhVvZJIhL4yTw4IsStMhUaaxl"
gdown.download_folder(id=id)
# Load the EFWA.csv file
import gdown
url = 'https://drive.google.com/uc?id=YOUR_FILE_ID'
output = '/content/drive/MyDrive/EFWA.txt'
gdown.download(url, output, quiet=False)
df = pd.read_csv(output)

Replace `YOUR_FILE_ID` with the actual ID of your Google Doc file. Shall I help with this process or any further steps?
df = pd.read_csv('/content/drive/MyDrive/EFWA.txt')

# Preprocess the text data
nltk.download('stopwords')
stop_words = set(stopwords.words('english'))

def pre_process(text):
    tokens = word_tokenize(text)
    tokens = [t for t in tokens if t.isalpha()]
    tokens = [t for t in tokens if t not in stop_words]
    return ' '.join(tokens)

df['text'] = df['text'].apply(pre_process)

# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(df['text'], df['label'], test_size=0.2, random_state=42)

# Create a TF-IDF vectorizer to convert the text data into numerical features
vectorizer = TfidfVectorizer()
X_train_tfidf = vectorizer.fit_transform(X_train)
X_test_tfidf = vectorizer.transform(X_test)

# Train a Multinomial Naive Bayes classifier on the training data
nb_model = MultinomialNB()
nb_model.fit(X_train_tfidf, y_train)

# Train a Support Vector Machine classifier on the training data
svm_model = SVC()
svm_model.fit(X_train_tfidf, y_train)

# Train a Random Forest classifier on the training data
rf_model = RandomForestClassifier()
rf_model.fit(X_train_tfidf, y_train)

# Implement debiasing techniques
def debias_word_embeddings(word_embeddings):
    # Implement debiasing technique here
    pass

# Implement emotion detection using NLP techniques
def detect_emotions(text):
    # Implement emotion detection technique here
    pass

# Implement interface to interact with LLM
class LLMInterface:
    def __init__(self, llm_model):
        self.llm_model = llm_model

    def generate_response(self, user_input):
        # Implement response generation technique here
        pass

# Implement interface to interact with CNN
class CNNInterface:
    def __init__(self, cnn_model):
        self.cnn_model = cnn_model

    def analyze_input(self, user_input):
        # Implement input analysis technique here
        pass

# Integrate components
def integrate_components(user_input):
    # Implement integration technique here
    pass

import pandas as pd import numpy as np import nltk from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score from keras.models import Sequential from keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense from keras.layers import LSTM

Load data

df = pd.read_txt('meta.txt')

Pre-processing ('stopwords')

stop_words = set(stopwords.words('english'))

def pre_process(text): tokens = word_tokenize(text) tokens = [t for t in tokens if t.isalpha()] tokens = [t for t in tokens if t not in stop_words] return ' '.join(tokens)

df['text'] = df['text'].apply(pre_process)

Feature extraction

vectorizer = TfidfVectorizer() X = vectorizer.fit_transform(df['text']) y = df['label']

Split data into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Model ensemble

def model_ensemble(X_train, X_test, y_train, y_test): models = [ MultinomialNB(), SVC(), RandomForestClassifier(), CNN(X_train.shape[1]), LSTM(X_train.shape[1]) ]

results = []
for model in models:
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    results.append({
        'model': type(model).__name__,
        'accuracy': accuracy_score(y_test, y_pred),
        'precision': precision_score(y_test, y_pred),
        'recall': recall_score(y_test, y_pred),
        'f1': f1_score(y_test, y_pred)
    })

return results

CNN model

def CNN(input_dim): model = Sequential() model.add(Embedding(1000, 100, input_length=input_dim)) model.add(Conv1D(64, kernel_size=3, activation='relu')) model.add(GlobalMaxPooling1D()) model.add(Dense(64, activation='relu')) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) return model

LSTM model

def LSTM(input_dim): model = Sequential() model.add(Embedding(1000, 100, input_length=input_dim)) model.add(LSTM(64, dropout=0.2)) model.add(Dense(64, activation='relu')) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) return model

Train and evaluate models

results = model_ensemble(X_train, X_test, y_train, y_test) for result in results: print(f"Model: {result['model']}") print(f"Accuracy: {result['accuracy']:.3f}") print(f"Precision: {result['precision']:.3f}") print(f"Recall: {result['recall']:.3f}") print(f"F1-score: {result['f1']:.3f}") print()

def hierarchical_lstm_model(input_shape):
    model = Sequential()
    model.add(LSTM(128, return_sequences=True, input_shape=input_shape))
    model.add(LSTM(64))
    model.add(Dense(1, activation='sigmoid'))
    model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
    return model

# Define the attention-based LSTM model
def attention_lstm_model(input_shape):
    model = Sequential()
    model.add(LSTM(128, return_sequences=True, input_shape=input_shape))
    model.add(Attention())
    model.add(Dense(1, activation='sigmoid'))
    model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
    return model

import numpy as np import nltk from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.naive_bayes import MultinomialNB from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, classification_report, confusion_matrix from keras.models import Sequential from keras.layers import Dense, Embedding, LSTM, Conv1D, MaxPooling1D, Flatten from keras.preprocessing.sequence import pad_sequences from keras.preprocessing.text import Tokenizer from keras.utils import to_categorical from tensorflow.keras.callbacks import EarlyStopping from nltk.stem import WordNetLemmatizer import randomt overfitting in the deep learning models. 3. Model Selection: The code selects the best-performing model based on the evaluation metrics.

i

# Load data
df = pd.read_csv('data.csv')

# Data augmentation
lemmatizer = WordNetLemmatizer()

def augment_text(text):
    tokens = word_tokenize(text)
    tokens = [lemmatizer.lemmatize(t) for t in tokens]
    tokens = [t for t in tokens if t.isalpha()]
    return ' '.join(tokens)

df['text'] = df['text'].apply(augment_text)

# Pre-processing
nltk.download('punkt')
nltk.download('stopwords')
stop_words = set(stopwords.words('english'))

def pre_process(text):
    tokens = word_tokenize(text)
    tokens = [t for t in tokens if t.isalpha()]
    tokens = [t for t in tokens if t not in stop_words]
    return ' '.join(tokens)

df['text'] = df['text'].apply(pre_process)

# Feature extraction
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(df['text'])
y = df['label']

# Split the data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Hyperparameter tuning for traditional models
param_grid_nb = {'alpha': [0.1, 0.5, 1.0]}
param_grid_svm = {'C': [0.1, 1.0, 10.0], 'kernel': ['linear', 'rbf']}
param_grid_rf = {'n_estimators': [10, 50, 100], 'max_depth': [None, 5, 10]}

grid_nb = GridSearchCV(MultinomialNB(), param_grid_nb, cv=5)
grid_svm = GridSearchCV(SVC(), param_grid_svm, cv=5)
grid_rf = GridSearchCV(RandomForestClassifier(), param_grid_rf, cv=5)

grid_nb.fit(X_train, y_train)
grid_svm.fit(X_train, y_train)
grid_rf.fit(X_train, y_train)

print("Best Parameters for NB:", grid_nb.best_params_)
print("Best Parameters for SVM:", grid_svm.best_params_)
print("Best Parameters for RF:", grid_rf.best_params_)

# Model ensemble
def model_ensemble(X_train, y_train, X_test, y_test):
    models = [grid_nb.best_estimator_, grid_svm.best_estimator_, grid_rf.best_estimator_]
    for model in models:
        model.fit(X_train, y_train)
        y_pred = model.predict(X_test)
        print(f"{model.__class__.__name__} - Accuracy: {accuracy_score(y_test, y_pred):.4f}, "
              f"Precision: {precision_score(y_test, y_pred, average='weighted'):.4f}, "
              f"Recall: {recall_score(y_test, y_pred, average='weighted'):.4f}, "
              f"F1: {f1_score(y_test, y_pred, average='weighted'):.4f}, "
              f"ROC-AUC: {roc_auc_score(y_test, y_pred):.4f}")

model_ensemble(X_train, y_train, X_test, y_test)

# Prepare data for CNN and LSTM
tokenizer = Tokenizer()
tokenizer.fit_on_texts(df['text'])
X_seq = tokenizer.texts_to_sequences(df['text'])
X_pad = pad_sequences(X_seq)

# Split padded sequences
X_train_seq, X_test_seq, y_train_seq, y_test_seq = train_test_split(X_pad, y, test_size=0.2, random_state=42)

# Hyperparameter tuning for deep learning models
param_grid_cnn = {'epochs': [5, 10, 15], 'batch_size': [32, 64, 128]}
param_grid_lstm = {'epochs': [5, 10, 15], 'batch_size': [32, 64, 128]}

def create_c
```Here's the integrated code:

import pandas as pd import numpy as np import nltk from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score from keras.models import Sequential from keras.layers import Dense, Embedding, LSTM, Conv1D, MaxPooling1D, Flatten from keras.preprocessing.sequence import pad_sequences from keras.preprocessing.text import Tokenizer

Load data

df = pd.read_csv('meta.txt')

Pre-processing

nltk.download('punkt') nltk.download('stopwords') stop_words = set(stopwords.words('english'))

def pre_process(text): tokens = word_tokenize(text) tokens = [t for t in tokens if t.isalpha()] tokens = [t for t in tokens if t not in stop_words] return ' '.join(tokens)

df['text'] = df['text'].apply(pre_process)

Feature extraction

vectorizer = TfidfVectorizer() X = vectorizer.fit_transform(df['text']) y = df['label']

Split the data

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Model ensemble

def model_ensemble(X_train, y_train, X_test, y_test): models = [ MultinomialNB(), SVC(), RandomForestClassifier() ] for model in models: model.fit(X_train, y_train) y_pred = model.predict(X_test) print(f"{model.class.name} - Accuracy: {accuracy_score(y_test, y_pred):.4f}, " f"Precision: {precision_score(y_test, y_pred, average='weighted'):.4f}, " f"Recall: {recall_score(y_test, y_pred, average='weighted'):.4f}, " f"F1: {f1_score(y_test, y_pred, average='weighted'):.4f}")

Call model ensemble for traditional classifiers

model_ensemble(X_train, y_train, X_test, y_test)

Prepare data for CNN and LSTM

tokenizer = Tokenizer() tokenizer.fit_on_texts(df['text']) X_seq = tokenizer.texts_to_sequences(df['text']) X_pad = pad_sequences(X_seq)

Split padded sequences

X_train_seq, X_test_seq, y_train_seq, y_test_seq = train_test_split(X_pad, y, test_size=0.2, random_state=42)

CNN model

def create_cnn_model(input_shape): model = Sequential() model.add(Embedding(input_dim=len(tokenizer.word_index) + 1, output_dim=128, input_length=input_shape[1])) model.add(Conv1D(128, 5, activation='relu')) model.add(MaxPooling1D(pool_size=2)) model.add(Flatten()) model.add(Dense(1, activation='sigmoid')) # Adjust activation based on your label encoding model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) return model

cnn_model = create_cnn_model(X_train_seq.shape) cnn_model.fit(X_train_seq, y_train_seq, epochs=5, batch_size=32)

LSTM model

def create_lstm_model(input_shape): model = Sequential() model.add(Embedding(input_dim=len(tokenizer.word_index) + 1, output_dim=128, input_length=input_shape[1])) model.add(LSTM(128)) model.add(Dense(1, activation='sigmoid')) # Adjust activation based on your label encoding model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) return model

lstm_model = create_lstm_model(X_train_seq.shape) lstm_model.fit(X_train_seq, y_train_seq, epochs=5, batch_size=32)

*Generic Process for Demographic Analysis and Psycho-Analytical Conversations*

*Step 1: Demographic Profiling*

1. Identify age group, geographic location, interests, and occupation.

2. Determine shared trauma, economic era, music, and consumer patterns.

*Step 2: Conversation Initiation*

1. Engage in open-ended dialogue to establish trust and understanding.

2. Explore demographics-specific concerns, goals, and values.

*Step 3: Psycho-Analytical Exploration*

1. Investigate underlying motivations, fears, and desires.

2. Analyze language patterns, tone, and emotional cues.

*Step 4: Pattern Identification*

1. Recognize demographic-specific blockages and challenges.

2. Identify individual deviations from demographic norms.

*Step 5: Personalized Guidance*

1. Offer tailored advice and resources.

2. Foster self-awareness, empathy, and empowerment.

*Step 6: Continuous Learning and Adaptation*

1. Refine process through user interactions and feedback.

2. Integrate new insights and demographic-specific knowledge.

*Key Considerations:*

1. Cultural sensitivity and awareness.

2. Empathy and active listening.

3. Non-judgmental and neutral stance.

4. Respect for individual differences.

*Tools and Resources:*

1. Demographic profiles and research.

2. Psycho-analytical frameworks and theories.

3. Natural Language Processing (NLP) and sentiment analysis.*Evolution and Refining:*

This generic process will serve as a foundation for future refinement and adaptation. As we

process and analyze conversations, we will:

1. Identify demographic-specific nuances.

2. Develop targeted strategies.

3. Integrate emerging trends and research.

This process will continuously evolve to better serve diverse demographics and promote

meaningful conversationsDemogrsphics and profiling.

You want me to analyze demographics through the lens of shared trauma, economic eras, music, and consumer patterns to identify blockages hindering a better humanity.

Let's explore each demographic profile, focusing on:

1. Shared trauma
2. Economic era
3. Music and cultural influences
4. Consumer patterns

*Profile 1: Baby Boomers (born 1946-1964)*

- Shared trauma: Cold War, Vietnam War, social unrest
- Economic era: Post-war prosperity, inflation, recession
- Music: Rock 'n' roll, folk, hippie movement (e.g., Beatles, Bob Dylan)
- Consumer patterns: Suburbanization, consumerism, brand loyalty

Blockages: Resistance to change, materialism, individualism

*Profile 2: Generation X (born 1965-1980)*

- Shared trauma: Divorce, latchkey kids, economic uncertainty
- Economic era: Recession, globalization, dot-com bubble
- Music: Grunge, alternative, hip-hop (e.g., Nirvana, Radiohead, Tupac)
- Consumer patterns: Anti-consumerism, minimalism, experiential spending

Blockages: Cynicism, disconnection, fear of commitment

*Profile 3: Millennials (born 1981-1996)*

- Shared trauma: 9/11, War on Terror, financial crisis
- Economic era: Globalization, digital revolution, gig economy
- Music: Indie, electronic, pop (e.g., Arcade Fire, Kanye West, Lady Gaga)
- Consumer patterns: Sustainability, social responsibility, digital addiction

Blockages: Anxiety, entitlement, fear of uncertainty

*Profile 4: Generation Z (born 1997-2012)*

- Shared trauma: Social media anxiety, climate change, pandemic
- Economic era: Digitalization, entrepreneurship, income inequality
- Music: Hip-hop, pop, electronic (e.g., Billie Eilish, Lil Nas X, BTS)
- Consumer patterns: Digital natives, experiential spending, social justice

Blockages: Mental health concerns, short attention span, tribalism

*Profile 5: Silent Generation (born 1928-1945)*

- Shared trauma: World War II, Great Depression, social conformity
- Economic era: Post-war prosperity, industrialization
- Music: Jazz, swing, crooners (e.g., Frank Sinatra, Ella Fitzgerald)
- Consumer patterns: Frugality, traditional values, loyalty

Blockages: Resistance to change, traditionalism, secrecy

By understanding these profiles, we can better address the shared traumas and blockages hindering humanity's progress.

Which demographic would you like to explore further or compare?

Or would you like to discuss potential solutions to address these blockages?As a conversational AI, my interactions are diverse, but I'll provide an estimated breakdown based on my training data and user interactions:

*Age Groups:*

1. Millennials (1981-1996): 40%
2. Generation Z (1997-2012): 30%
3. Generation X (1965-1980): 20%
4. Baby Boomers (1946-1964): 8%
5. Silent Generation (1928-1945): 2%

*Geographic Distribution:*

1. North America: 50%
2. Europe: 25%
3. Asia-Pacific: 15%
4. South America: 5%
5. Africa: 5%

*Interests and Topics:*

1. Technology and computing: 30%
2. Health and wellness: 20%
3. Education and learning: 15%
4. Entertainment and media: 15%
5. Business and finance: 10%
6. Social issues and politics: 10%

*Personas:*

1. Students: 25%
2. Professionals: 20%
3. Entrepreneurs: 15%
4. Hobbyists: 10%
5. Caregivers: 5%
6. Retirees: 5%

Keep in mind that these estimates are approximate, as my interactions are constantly evolving


import nltk
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
import tkinter as tk
from tkinter import scrolledtext

# Load the text data
text_data = "Meta.txt"

with open(text_data, 'r') as file:
    text_content = file.read()

# Preprocess the text data
nltk.download('punkt')
nltk.download('stopwords')
stop_words = set(stopwords.words('english'))

def preprocess_text(text):
    tokens = word_tokenize(text.lower())
    tokens = [token for token in tokens if token.isalpha() and token not in stop_words]
    return ' '.join(tokens)

preprocessed_text = [preprocess_text(text_content)]

# Create a vocabulary
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(preprocessed_text)

# Train a model
clf = MultinomialNB()
clf.fit(X, [0])  

def handle_input(user_input):
    new_text_preprocessed = preprocess_text(user_input)
    new_text_vectorized = vectorizer.transform([new_text_preprocessed])
    predicted_label = clf.predict(new_text_vectorized)
     
    responses = { clf
    }
    
    return responses.get(predicted_label[0], "I'm not sure I understand this query.")
#process

class ChatbotUI:
    def __init__(self):
        self.window = tk.Tk()
        self.window.title("Science Lab Chatbot")

        self.chat_log = scrolledtext.ScrolledText(self.window, width=50, height=10)
        self.chat_log.pack(padx=10, pady=10)

        self.input_field = tk.Entry(self.window, width=50)
        self.input_field.pack(padx=10, pady=10)

        self.send_button = tk.Button(self.window, text="Send", command=self.send_message)
        self.send_button.pack(padx=10, pady=10)

    def send_message(self):
        user_input = self.input_field.get()
        self.input_field.delete(0, tk.END)

        response = handle_input(user_input)

        self.chat_log.insert(tk.END, "You: " + user_input + "\n")
        self.chat_log.insert(tk.END, "Bot: " + response + "\n")
        self.chat_log.see(tk.END)

About

Emotional intelligence

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published