Repository for Community Forensics: Using Thousands of Generators to Train Fake Image Detectors.
(Project page)
Currently, we release a simple evaluation pipeline that outputs a probability of an input image being generated.
- Download the checkpoints. Link (Dropbox)
- Install the required libraries --
torch,torchvision,pillow,timmpip install -r requirements.txt
- Run the evaluation pipeline.
- If evaluating a single file:
python main.py --input_path="test_image.jpeg" --output_path="./results_dir" --device="cuda" --checkpoint_path="pretrained_weights/model_v11_ViT_384_base_ckpt.pt"
- If evaluating a folder:
python main.py --input_path="./path_to_test_images" --output_path="./results_dir" --device="cuda" --checkpoint_path="pretrained_weights/model_v11_ViT_384_base_ckpt.pt"
- If evaluating a single file:
- Check the
.jsonfiles containing the results under the output path designated by--output_pathargument.
@misc{park2024communityforensics,
title={Community Forensics: Using Thousands of Generators to Train Fake Image Detectors},
author={Jeongsoo Park and Andrew Owens},
year={2024},
eprint={2411.04125},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2411.04125},
}