Skip to content

ARM-Synergy/tracer-mip

Repository files navigation

Tracking Aerosol Convection Interaction Experiment (TRACER) Model Intercomparison Project (MIP)

Background and Motivation

The DOE ARM Tracking Aerosol Convection Interaction Experiment (TRACER) campaign took place in the Houston, TX region from 01 October 2021 through 30 September 2022, with an IOP from June-September 2022, which collected a comprehensive dataset focused on the evolution of convective clouds and their environment (including aerosol, cloud, thermodynamics, and lightning). A unique component of TRACER is that a large number of individual, isolated convective cells were tracked and measured with high spatial and temporal resolution. These comprehensive, unique observational datasets can help evaluate model and parameterization performance, identify model and parameterization deficiencies, and gain new insights to improve models. This provides the motivation for conducting an additional community model intercomparison project (MIP) based on the previous Aerosol Cloud Precipitation Climate (ACPC) Deep Convective Cloud (DCC) MIP (ACPC-MIP; van den Heever et al. 2017; Marinescu et al. 2021; Saleeby et al. 2025; van den Heever et al. 2025), which is referred to as the TRACER-MIP.

Modeling Groups

Name / group Institution Email Model / version Microphysics Note (any information you want to include here about aerosol and cloud microphysics treatment)
Stephen Saleeby,
Sue van den Heever
CSU stephen.saleeby@colostate.edu,
sue.vandenheever@colostate.edu
RAMS RAMS Prognostic aerosol treatment, predicted supersaturation
Jiwen Fan,
Soumya Samanta
ANL fanj@anl.gov,
ssamanta@anl.gov
WRF v4.0 FSBM1 Prognostic aerosol treatment, predicted supersaturation
Christian Barthlott,
Corinna Hoose
KIT corinna.hoose@kit.edu,
christian.barthlott@kit.edu
ICON 2.6.6 (possibly ICON-ART) Seifert & Beheng double-moment Aerosols constant in space/time, saturation adjustment
John Mejia DRI john.mejia@dri.edu WRF v4.5.1 Morrison Aerosol-Aware; ice and water paths Prognostic aerosol treatment, predicted supersaturation
Jorge Gonzalez,
Jean Carlos Pena
SUNY-Albany jgonzalez-cruz@albany.edu,
jpena4@albany.edu
Hamish Gordon CMU gordon@cmu.edu
Toshi Matsui,
Taka Iguchi
NASA-Goddard toshihisa.matsui-1@nasa.gov,
takamichi.iguchi@nasa.gov
NU-WRF NSSL Microphysics
Johannes Quaas, Alice Henkes Leipzig Univ. johannes.quaas@uni-leipzig.de,
alice.henkes@uni-leipzig.de
ICON-MPIM Seifert & Beheng double-moment
Philip Stier UK-Oxford philip.stier@physics.ox.ac.uk
Benoit Vie Meteo-France benoit.vie@meteo.fr Meso-NH
Yang Tian UCAR-CGGD ytian@ucar.edu
Yunyan Zhang,
Hsi-Yen Ma,
Jishi Zhang,
Peter Andrew Bogenschutz
LLNL zhang25@llnl.gov,
ma21@llnl.gov,
zhang73@llnl.gov,
bogenschutz1@llnl.gov
DOE-SCREAM
Paul Field,
Annica Ekman
Univ. Leeds,
Stockholm Univ.
p.field@leeds.ac.uk,
annica@misu.su.se

Observational Groups

Name / group Institution Email Note (any information you want to include here about your contribution)
Gijs de Boer Univ. Colorado, Boulder gijs.deboer@colorado.edu We have limited UAS data for the first case (17 June), including 18 CopterSonde and 1 RAAVEN flights. However, I’d be happy to support broader (beyond UAS) data analysis needs, as able.
Hassan Dashtian,
Michael H Young
Univ. Texas, Austin michael.young@beg.utexas.edu,
hassan.dashtian@beg.utexas.edu
Collected soil moisture data for TRACER
Katia Lamer BNL klamer@bnl.gov Spatially distributed atmospheric boundary layer dataset (https://www.nature.com/articles/s41597-024-03477-9)

Authors:

Intercomparison Development

Jiwen Fan*,#, Stephen Saleeby*, Michael Jensen #, Susan van den Heever, Pavlos Kollias, Tamanna Subba, Chongai Kuang, Bo Chen, Anita D. Rapp, Sarah D. Brooks, Maria Zawadowicz, Soumya Samanta, Mariko Oue

*TRACER-MIP co-leads
#Aerosol Cloud Precipitation Climate (ACPC) Deep Cloud co-leads

Infrastructure Development

Max Grover

About

Repository for coordinating the tracer-mip activity

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •