-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
479 lines (417 loc) · 20.4 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<!-- Meta tags for social media banners, these should be filled in appropriately as they are your "business card" -->
<!-- Replace the content tag with appropriate information -->
<meta name="description" content="DESCRIPTION META TAG">
<meta property="og:title" content="SOCIAL MEDIA TITLE TAG"/>
<meta property="og:description" content="SOCIAL MEDIA DESCRIPTION TAG TAG"/>
<meta property="og:url" content="URL OF THE WEBSITE"/>
<!-- Path to banner image, should be in the path listed below. Optimal dimensions are 1200X630-->
<meta property="og:image" content="static/image/your_banner_image.png" />
<meta property="og:image:width" content="1200"/>
<meta property="og:image:height" content="630"/>
<meta name="twitter:title" content="TWITTER BANNER TITLE META TAG">
<meta name="twitter:description" content="TWITTER BANNER DESCRIPTION META TAG">
<!-- Path to banner image, should be in the path listed below. Optimal dimensions are 1200X600-->
<meta name="twitter:image" content="static/images/your_twitter_banner_image.png">
<meta name="twitter:card" content="summary_large_image">
<!-- Keywords for your paper to be indexed by-->
<meta name="keywords" content="Dexterous Manipulation, Machine Learning For Robot Control, Deep Learning in Grasping and Manipulation">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>DexSkills</title>
<link rel="icon" type="image/x-icon" href="static/images/First_image_lightC.ico">
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
rel="stylesheet">
<link rel="stylesheet" href="static/css/bulma.min.css">
<link rel="stylesheet" href="static/css/bulma-carousel.min.css">
<link rel="stylesheet" href="static/css/bulma-slider.min.css">
<link rel="stylesheet" href="static/css/fontawesome.all.min.css">
<link rel="stylesheet"
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<link rel="stylesheet" href="static/css/index.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script src="https://documentcloud.adobe.com/view-sdk/main.js"></script>
<script defer src="static/js/fontawesome.all.min.js"></script>
<script src="static/js/bulma-carousel.min.js"></script>
<script src="static/js/bulma-slider.min.js"></script>
<script src="static/js/index.js"></script>
</head>
<body>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="title is-1 publication-title">DexSkills: Skill Segmentation Using Haptic Data for Learning Autonomous Long-Horizon Robotic Manipulation Task</h1>
<div class="is-size-5 publication-authors is-centered">
<!-- First two authors on one row -->
<div class="columns is-centered is-gapless">
<div class="column">
<span class="author-block">
<a href="https://www.linkedin.com/in/xiaofeng-mao-45449a202/" target="_blank">Xiaofeng Mao</a><sup>1,* </sup>
and
<a href="https://www.linkedin.com/in/gabrielegiudici93/" target="_blank"> Gabriele Giudici</a><sup>2,*</sup>
</span>
</div>
</div>
<!-- Remaining authors on a second row -->
<div class="columns">
<div class="column">
<span class="author-block">
<a href="https://www.claudiocoppola.com/" target="_blank">Claudio Coppola</a><sup>3</sup>
</span>
</div>
<div class="column">
<span class="author-block">
<a href="https://www.sems.qmul.ac.uk/staff/k.althoefer" target="_blank">Kaspar Althoefer</a><sup>2</sup>
</span>
</div>
<div class="column">
<span class="author-block">
<a href="https://www.linkedin.com/in/ildar-farkhatdinov" target="_blank">Ildar Farkhatdinov</a><sup>2</sup>
</span>
</div>
<div class="column">
<span class="author-block">
<a href="https://www.linkedin.com/in/zhibin-alex-li" target="_blank">Zhibin Li</a><sup>4</sup>
</span>
</div>
<div class="column">
<span class="author-block">
<a href="https://www.sems.qmul.ac.uk/staff/l.jamone" target="_blank">Lorenzo Jamone</a><sup>2</sup>
</span>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<div class="columns is-centered">
<div class="column has-text-centered">
<div class="is-size-5 publication-authors">
<span class="author-block">University of Edinburgh <sup>1</sup>, Queen Mary University of London<sup>2</sup>, Amazon ATS<sup>3</sup>, University College London<sup>4</sup><br>Presented IROS 2024</span>
<span class="eql-cntrb"><small><br><sup>*</sup>Indicates Equal Contribution</small></span>
</div>
</div>
</div>
<div class="column has-text-centered">
<div class="publication-links">
<!-- Arxiv PDF link -->
<span class="link-block">
<a href="https://arxiv.org/abs/2405.03476" target="_blank" class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Paper</span>
</a>
</span>
<!-- Supplementary PDF link -->
<span class="link-block">
<a href="static/pdfs/supplementary_material.pdf" target="_blank" class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Supplementary</span>
</a>
</span>
<!-- Github link -->
<span class="link-block">
<a href="https://github.com/ARQ-CRISP/DexSkills" target="_blank" class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Code</span>
</a>
</span>
<!-- ArXiv abstract Link -->
<span class="link-block">
<a href="https://arxiv.org/abs/2405.03476" target="_blank" class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="ai ai-arxiv"></i>
</span>
<span>arXiv</span>
</a>
</span>
</div>
</div>
<!-- Paper abstract -->
<section class="section hero is-light">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>
Effective execution of long-horizon tasks with dexterous robotic hands remains a significant challenge in real-world problems. While learning from human demonstrations have shown encouraging results, they require extensive data collection for training. Hence, decomposing long-horizon tasks into reusable primitive skills is a more efficient approach. To achieve so, we developed DexSkills, a novel supervised learning framework that addresses long-horizon dexterous manipulation tasks using primitive skills. DexSkills is trained to recognize and replicate a select set of skills using human demonstration data, which can then segment a demonstrated long-horizon dexterous manipulation task into a sequence of primitive skills to achieve one-shot execution by the robot directly. Significantly, DexSkills operates solely on proprioceptive and tactile data, i.e., haptic data. Our real-world robotic experiments show that DexSkills can accurately segment skills, thereby enabling autonomous robot execution of a diverse range of tasks. </p>
</div>
</div>
</div>
</div>
</section>
<!-- End paper abstract -->
<!-- Presentation video -->
<section class="hero is-small is-light">
<div class="hero-body">
<div class="container">
<h2 class="title is-3 has-text-centered">Video Presentation</h2>
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<div class="publication-video">
<video poster="" id="presentation-video" controls muted loop height="100%">
<!-- Your presentation video here -->
<source src="static/videos/IROS_V3.mp4" type="video/mp4">
</video>
</div>
</div>
</div>
</div>
</div>
</section>
<!-- End presentation video -->
<!-- Section with multiple images -->
<section class="hero is-small">
<div class="hero-body">
<div class="container">
<!-- Title for the section -->
<h2 class="title is-4 has-text-centered"></h2>
<!-- Section with multiple images and a video -->
<section class="hero is-small">
<div class="hero-body">
<div class="container">
<!-- Title for the section -->
<h2 class="title is-4 has-text-centered">DexSkills: Framework Overview</h2>
<!-- First image and text -->
<div class="columns is-vcentered">
<div class="column">
<img src="static/images/First_img_800.png" alt="MY ALT TEXT"/>
</div>
<div class="column">
<h2 class="subtitle has-text-justified">
Overview of the proposed long-horizon task segmentation approach. Individual skills are segmented and classified at each temporal window of the demonstration.
The demonstrations are collected via the teleoperation system presented in <a href="#related-works">Related Works</a>: "Feeling Good: Validation of Bilateral Tactile Telemanipulation for a Dexterous Robot".
</h2>
</div>
</div>
<!-- Second video and text -->
<!-- Video and text -->
<div class="columns is-vcentered" style="margin-top: 20px;">
<div class="column has-text-centered">
<video width="800" controls>
<source src="static/videos/video_overview.mp4" type="video/mp4">
</video>
<h2 class="subtitle has-text-centered" style="margin-top: 10px;">
Example of primitive skills and long-horizon demonstration and autonomous execution.
</h2>
</div>
</div>
</div>
</div>
</section>
<!-- Second group of figures -->
<section class="hero is-small">
<div class="hero-body">
<div class="container">
<!-- Demonstration and Autonomous Control Architecture -->
<div class="item has-text-centered" style="margin-top: 20px;">
<h2 class="title is-4">Demonstration and Autonomous Control Architecture</h2>
<div class="columns is-vcentered">
<!-- Text for the second image -->
<div class="column is-half">
<h2 class="subtitle has-text-justified">
The leader agent generates motor control commands for the end effector pose and finger joints of the hand. The follower robot executes corresponding actions based on these commands. During teleoperation, the follower robot provides haptic feedback.
When operating the robot autonomously, we control the robot using a distinct MLP trained on the proprioceptive and tactile data (i.e. haptic data) of each separate skill.
</h2>
</div>
<!-- Second image -->
<div class="column is-half">
<img src="static/images/FIG2_800.png" alt="MY ALT TEXT"/>
</div>
</div>
</div>
<!-- Video and text -->
<div class="columns is-vcentered" style="margin-top: 20px;">
<div class="column has-text-centered">
<video width="800" controls>
<source src="static/videos/video_single_skill.mp4" type="video/mp4">
</video>
<h2 class="subtitle has-text-centered" style="margin-top: 10px;">
Video of each primitive Skill
</h2>
</div>
</div>
<!-- New images -->
<div class="columns is-centered" style="margin-top: 20px;">
<!-- First new image -->
<div class="column is-half has-text-centered" style="height: 500px;">
<img src="static/images/table_skills_800.png" alt="Table Skills" style="max-width: 100%; max-height: 100%;"/>
<h2 class="subtitle has-text-centered">List of primitive skills</h2>
</div>
<!-- Second new image -->
<div class="column is-half has-text-centered" style="height: 500px;">
<img src="static/images/table_LH_800.png" alt="Table LH" style="max-width: 100%; max-height: 100%;"/>
<h2 class="subtitle has-text-justified">Long-Horizon tasks: primitive skill recombinations.
Tasks are denoted by alphabetical letters ranging from A to T. Objects utilized for the demonstrations are indicated within parentheses: (s) sponge, (t) tomato passata package, and (b) bottle containing liquid.</h2>
</div>
</div>
</div>
</div>
</section>
<!-- Third group of figures -->
<section class="hero is-small">
<div class="hero-body">
<div class="container">
<!-- DexSkills: Learning Framework -->
<div class="item has-text-centered" style="margin-top: 120px;">
<h2 class="title is-4">DexSkills: Learning Framework</h2>
<div class="columns is-vcentered">
<!-- Third image -->
<div class="column is-half">
<img src="static/images/FIG3_800.png" alt="MY ALT TEXT"/>
</div>
<!-- Text for the third image -->
<div class="column is-half">
<h2 class="subtitle has-text-justified">
The architecture of our Neural Network for supervised representation learning incorporates an auto-regressive autoencoder and a label decoder.
This network processes time-series feature data as input, with the encoder transforming these features into a latent space. The temporal decoder reconstructs the features along with their predictions, whereas the label decoder extracts labels from the latent vectors.
The label decoder is jointly trained with the autoencoder generating latent features that improve the segmentation performance.
</h2>
</div>
</div>
</div>
</div>
</div>
</section>
<!-- Fourth and Fifth group of figures -->
<div class="item has-text-centered" style="margin-top: 20px;">
<!-- Classification Results -->
<h2 class="title is-4">Classification Results</h2>
<div class="columns">
<!-- Fourth image -->
<div class="column">
<img src="static/images/confmat.png" alt="MY ALT TEXT"/>
<h2 class="subtitle has-text-justified">
Confusion matrix (%) of the segmentation system on the Long-horizon demonstrations
</h2>
</div>
<!-- Fifth image -->
<div class="column">
<img src="static/images/TSNE_800.png" alt="MY ALT TEXT"/>
<h2 class="subtitle has-text-justified">
T-SNE visualization of the classifier latent features. Each point in the graph corresponds to a primitive skill instance, differentiated by various colors to distinguish among the primitive skills.
</h2>
</div>
</div>
</div>
<!-- Sixth and Seventh group of figures -->
<div class="item has-text-centered" style="margin-top: 20px;">
<!-- Autonomous Robot Execution -->
<h2 class="title is-4"> Autonomous Robot Execution</h2>
<div class="columns">
<!-- Sixth image -->
<div class="column">
<img src="static/images/VIDEO_A_800.png" alt="MY ALT TEXT"/>
<h2 class="subtitle has-text-justified">
Long-horizon Task A using a soft sponge
</h2>
</div>
<!-- Seventh image -->
<div class="column">
<img src="static/images/VIDEO_B_800.png" alt="MY ALT TEXT"/>
<h2 class="subtitle has-text-justified">
Long-horizon Task B using a cardboard package
</h2>
</div>
</div>
</div>
</div>
</div>
<!-- Video and text -->
<div class="container" style="margin-top: 20px;">
<div class="columns is-centered">
<div class="column is-half has-text-centered">
<video width="660" controls>
<source src="static/videos/video_taskA.mp4" type="video/mp4">
</video>
<h2 class="subtitle has-text-justified" style="margin-top: 10px;">
Robot Autonomous Execution : Long-Horizon Task A
</h2>
</div>
<div class="column is-half has-text-centered">
<video width="660" controls>
<source src="static/videos/video_taskB.mp4" type="video/mp4">
</video>
<h2 class="subtitle has-text-justified" style="margin-top: 10px;">
Robot Autonomous Execution : Long-Horizon Task B
</h2>
</div>
</div>
</div>
<!-- Related Works -->
<section id="related-works" class="hero is-small is-light">
<div class="hero-body">
<div class="container">
<h2 class="title">Related Works</h2>
<!-- Commented out the PDF and added a link to a web page -->
<!-- <iframe src="static/pdfs/FeelingGood_GIUDICI_TAROS_2023.pdf" width="100%" height="550"></iframe> -->
<div class="content">
<p>Giudici, Gabriele, et al. "Feeling good: Validation of bilateral tactile telemanipulation for a dexterous robot." Annual Conference Towards Autonomous Robotic Systems. Cham: Springer Nature Switzerland, 2023. <a href="https://link.springer.com/chapter/10.1007/978-3-031-43360-3_36" style="color:blue;">[here]</a>.</p> </div>
<p>Coppola, Claudio, and Lorenzo Jamone. "Master of puppets: multi-modal robot activity segmentation from teleoperated demonstrations." 2022 IEEE International Conference on Development and Learning (ICDL). IEEE, 2022. <a href="https://ieeexplore.ieee.org/abstract/document/9962193" style="color:blue;">[here]</a>.</p> </div>
</div>
</div>
</section>
<!-- End paper poster -->
<!-- Youtube video -->
<!-- <section class="hero is-small is-light">
<!-- <div class="hero-body"> --> -->
<!-- <div class="container"> -->
<!-- Paper video. -->
<!-- <h2 class="title is-3">CRISP YOUTUBE PAGE</h2> -->
<!-- <div class="columns is-centered has-text-centered"> -->
<!-- <div class="column is-four-fifths"> -->
<!-- <div class="publication-video"> -->
<!-- Youtube embed code here -->
<!-- <iframe src="https://youtu.be/_Y7bXkBujqw?si=yjVHjq82F_wMHcnr" frameborder="0" allow="autoplay; encrypted-media" allowfullscreen></iframe> -->
<!-- </div> -->
<!-- </div> -->
<!-- </div> -->
<!-- </div> -->
<!-- </div> -->
<!-- </section> -->
<!-- End youtube video -->
<!--BibTex citation -->
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h2 class="title">BibTeX</h2>
<pre><code>@article{mao2024dexskills,
title={DexSkills: Skill Segmentation Using Haptic Data for Learning Autonomous Long-Horizon Robotic Manipulation Tasks},
author={Mao, Xiaofeng and Giudici, Gabriele and Coppola, Claudio and Althoefer, Kaspar and Farkhatdinov, Ildar and Li, Zhibin and Jamone, Lorenzo},
journal={arXiv preprint arXiv:2405.03476},
year={2024}
}</code></pre>
</div>
</section>
<!--End BibTex citation -->
<footer class="footer">
<div class="container">
<div class="columns is-centered">
<div class="column is-8">
<div class="content">
<p>
This page was built using the <a href="https://github.com/eliahuhorwitz/Academic-project-page-template" target="_blank">Academic Project Page Template</a> which was adopted from the <a href="https://nerfies.github.io" target="_blank">Nerfies</a> project page.
You are free to borrow the of this website, we just ask that you link back to this page in the footer. <br> This website is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/" target="_blank">Creative
Commons Attribution-ShareAlike 4.0 International License</a>.
</p>
</div>
</div>
</div>
</div>
</footer>
<!-- Statcounter tracking code -->
<!-- You can add a tracker to track page visits by creating an account at statcounter.com -->
<!-- End of Statcounter Code -->
</body>
</html>