CardioTox net: A robust predictor for hERG channel blockade via deep learning meta ensembling approaches
This is complementary code for running the models in the paper https://jcheminf.biomedcentral.com/articles/10.1186/s13321-021-00541-z
Tested on Ubuntu 20.04 with Python 3.7.7
- Install conda dependency manager https://docs.conda.io/en/latest/
- Restore environment.yml:
conda env create -f environment.yml
- Activate environment:
conda activate cardiotox
- Install pyBioMed:
cd PyBioMed
python setup.py install
cd ..
- Test model:
python test.py
This will test the model on two external data sets mentioned in the paper.
import cardiotox
smile = "CC(=O)SC1CC2=CC(=O)CCC2(C)C2CCC3C(CCC34CCC(=O)O4)C12"
model = cardiotox.load_ensemble()
model.predict(smile)
import cardiotox
smiles = [
"CC(=O)SC1CC2=CC(=O)CCC2(C)C2CCC3C(CCC34CCC(=O)O4)C12",
"CCCCCCCCCC[N+](CC)(CC)CC"
]
model = cardiotox.load_ensemble()
model.predict(smiles)
from cardiotox import DescModel, SVModel, FVModel, FingerprintModel
from cardiotox import SVModel
smile = "CCCCCCCCCC[N+](CC)(CC)CC"
model = SVModel()
model.predict(smile)
Each model performs its own preprocessing. When 'predict' is called, the preprocessing is performed before running the model. This can be accessed by calling the 'preprocess_smile' function.
from cardiotox import SVModel
smile = "CCCCCCCCCC[N+](CC)(CC)CC"
model = SVModel()
preprocessed_smile = model.preprocess_smile([smile]) # Expects a list of smiles
model.predict_preprocessed(preprocessed_smile)
We make sure that none of the molecule in both test sets (test set-I, test set-II) are similar to trainining set (training) and to each other as well.
We compared our method using the test set-I and test set-II with other state of the art methods as follows.
Test set-I | Test set-II | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|