Skip to content

Abrikosoff/hessian

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

34 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

hessian

Install with

python setup.py install

Compute Hessian

import torch
from hessian import hessian

x = torch.tensor([1.5, 2.5], requires_grad=True)
h = hessian(x.pow(2).prod(), x, create_graph=True)

print(h)
# tensor([[12.5, 15],
#         [15,  4.5]], grad_fn=<CopySlices>)

h2 = hessian(h.sum(), x)
print(h2)
# tensor([[4, 8],
#         [8, 4]])

The hessian is computed naively assuming the commutativity of the derivatives.

Compute Jacobian

import torch
from hessian import jacobian

x = torch.tensor([1.5, 2.5], requires_grad=True)
y = torch.tensor([5.5, -4.], requires_grad=True)
j = jacobian(x.pow(y), [x, y])

print(j)
# tensor([[34.1, -0.00,  3.77,  0.00],
#         [ 0.0, -0.04,  0.00,  0.02]])

About

hessian in pytorch

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%