Skip to content

A comprehensive, high-performance Python library for creating, validating, and manipulating Open Data Product Specification (ODPS) v4.0 documents with full international standards compliance.

License

Notifications You must be signed in to change notification settings

Accenture/odps-python

Repository files navigation

ODPS Python Library

PyPI version Python Support License: Apache-2.0

A comprehensive, high-performance Python library for creating, validating, and manipulating Open Data Product Specification (ODPS) v4.0 documents with full international standards compliance.

🚀 Features

Core Capabilities

  • Complete ODPS v4.0 Support: Full implementation of the Open Data Product Specification
  • International Standards Compliance: Validates against ISO, RFC, and ITU-T standards
  • Flexible I/O: JSON and YAML serialization/deserialization support
  • Type Safety: Comprehensive type hints and protocol-based duck typing
  • Multilingual Support: Full support for multilingual field dictionaries

Performance & Architecture

  • High Performance: Optimized with validation caching, serialization caching, and __slots__
  • Modular Architecture: Pluggable validation framework and component system
  • Protocol-Based Design: Duck typing protocols for better type safety
  • Comprehensive Error Handling: Hierarchical exception system with 20+ specific error types

Standards Validation

  • ISO 639-1: Language code validation
  • ISO 3166-1 alpha-2: Country code validation
  • ISO 4217: Currency code validation
  • ISO 8601: Date/time format validation
  • ITU-T E.164: Phone number format validation
  • RFC 5322: Email address validation
  • RFC 3986: URI/URL validation

Developer Experience

  • Comprehensive Documentation: Full API documentation and examples
  • IDE Support: Complete type hints for excellent IntelliSense
  • Detailed Error Messages: Specific validation errors with context

Installation

pip install odps-python

# For full standards validation support:
pip install "odps-python[validation]"

# For development:
pip install "odps-python[dev]"

Quick Start

from odps import OpenDataProduct
from odps.models import ProductDetails, DataAccessMethod, DataHolder, License

# Create a new data product with international standards compliance
product = ProductDetails(
    name="My Weather API",
    product_id="weather-api-v1", 
    visibility="public",
    status="production",
    type="dataset",
    description="Real-time weather data",
    language=["en", "fr"],  # ISO 639-1 language codes
    homepage="https://example.com"  # RFC 3986 compliant URI
)

# Create ODPS document
odp = OpenDataProduct(product)

# Add data access with required default method
default_access = DataAccessMethod(
    name={"en": "REST API", "fr": "API REST"},  # Multilingual support
    output_port_type="API",
    access_url="https://api.example.com/weather",  # RFC 3986 URI
    documentation_url="https://docs.example.com"   # RFC 3986 URI
)
odp.add_data_access(default_access)

# Add data holder with validated contact info
odp.data_holder = DataHolder(
    name="Weather Corp",
    email="contact@example.com",  # RFC 5322 email validation
    phone_number="+12125551234"    # E.164 phone validation
)

# Add license with ISO 8601 date validation
odp.license = License(
    scope_of_use="commercial",
    valid_from="2024-01-01",          # ISO 8601 date
    valid_until="2025-12-31T23:59:59Z"  # ISO 8601 datetime
)

# Comprehensive validation with all standards
try:
    odp.validate()
    print("✓ Document valid with full standards compliance")
except Exception as e:
    print(f"Validation errors: {e}")

# Export
print(odp.to_json())
odp.save("my-product.json")

# Load existing document
loaded = OpenDataProduct.from_file("my-product.json")

Core Components

ProductDetails (Required)

  • name: Product name
  • product_id: Unique identifier
  • visibility: public, private, etc.
  • status: draft, production, etc.
  • type: dataset, algorithm, etc.

Optional Components

  • DataContract: API specifications and data schemas
  • SLA: Service level agreements
  • DataQuality: Quality metrics and rules
  • PricingPlans: Pricing tiers with ISO 4217 currency validation
  • License: Usage rights with ISO 8601 date validation
  • DataAccess: Access methods (requires default method per ODPS v4.0)
  • DataHolder: Contact information with email/phone validation
  • PaymentGateways: Payment processing details

Validation Standards

The library enforces all international standards referenced in ODPS v4.0:

Standard Used For Example
ISO 639-1 Language codes "en", "fr", "de"
ISO 3166-1 alpha-2 Country codes "US", "GB", "DE"
ISO 4217 Currency codes "USD", "EUR", "GBP"
ISO 8601 Date/time formats "2024-01-01", "2024-01-01T12:00:00Z"
E.164 Phone numbers "+12125551234"
RFC 5322 Email addresses "user@example.com"
RFC 3986 URIs/URLs "https://example.com/api"

Multilingual Support

Fields like dataAccess.name and dataAccess.description support multilingual dictionaries:

{
    "name": {
        "en": "Weather API",
        "fr": "API Météo",
        "de": "Wetter-API"
    }
}

All language keys are validated against ISO 639-1 standards.

⚡ Performance Features

Intelligent Caching

The library includes sophisticated caching for optimal performance:

import time
from odps import OpenDataProduct, ProductDetails

# Create a product
details = ProductDetails(
    name="Performance Test",
    product_id="perf-001", 
    visibility="public",
    status="draft",
    type="dataset"
)
product = OpenDataProduct(details)

# First validation - full processing
start = time.time()
product.validate()
first_time = time.time() - start

# Second validation - cached result
start = time.time()
product.validate()
cached_time = time.time() - start

print(f"Cache speedup: {first_time/cached_time:.1f}x")  # Typically 20-50x faster

Compliance Assessment

# Comprehensive compliance checking
compliance_level = product.compliance_level  # "minimal", "basic", "substantial", "full"
is_production_ready = product.is_production_ready
validation_errors = product.validation_errors  # No exceptions raised
component_count = product.component_count

🔧 Advanced Usage

Custom Validation

from odps.validators import ODPSValidator

# Validate individual components
print(ODPSValidator.validate_iso639_language_code("en"))  # True
print(ODPSValidator.validate_currency_code("USD"))        # True
print(ODPSValidator.validate_email("test@example.com"))   # True
print(ODPSValidator.validate_phone_number("+12125551234"))  # True
print(ODPSValidator.validate_iso8601_date("2024-01-01"))    # True

Loading from Different Formats

# From JSON
odp = OpenDataProduct.from_json(json_string)

# From YAML  
odp = OpenDataProduct.from_yaml(yaml_string)

# From file (auto-detects format)
odp = OpenDataProduct.from_file("product.json")
odp = OpenDataProduct.from_file("product.yaml")

Development

git clone https://github.com/accenture/odps-python
cd odps-python
pip install -e ".[dev]"
python examples/comprehensive_example.py

Dependencies

The library requires the following packages for full standards compliance:

  • pycountry: ISO standards validation (languages, countries, currencies)
  • phonenumbers: E.164 phone number validation
  • PyYAML: YAML format support

License

Apache License 2.0 - see LICENSE file for details.

Contributing

Contributions welcome! Please read CONTRIBUTING.md for guidelines.

Error Handling

The library provides detailed validation error messages that reference specific standards:

try:
    odp.validate()
except ODPSValidationError as e:
    print(e)
    # Output: "Validation errors: Invalid ISO 639-1 language code: 'xyz'; 
    #          dataHolder email must be a valid RFC 5322 email address"

🏆 Acknowledgments

We extend our gratitude to the following:

Open Data Product Initiative Team - Special thanks to the team at opendataproducts.org for their work in creating and maintaining the Open Data Product Specification (ODPS). Their vision of standardizing data product descriptions and enabling better data discovery and interoperability has made this library possible. The ODPS v4.0 specification represents years of collaborative effort from industry experts, data practitioners, and open source contributors who are driving the future of data standardization.

Python Community - For the exceptional ecosystem of libraries and tools that power this implementation, including PyYAML, pycountry, phonenumbers, and the countless other packages that make Python development a joy.

Data Community - For embracing open standards and driving the need for better data product specifications and tooling that benefits everyone in the data ecosystem.

📚 Links & References

About

A comprehensive, high-performance Python library for creating, validating, and manipulating Open Data Product Specification (ODPS) v4.0 documents with full international standards compliance.

Topics

Resources

License

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages