Skip to content

Commit

Permalink
Patch small items (#63)
Browse files Browse the repository at this point in the history
* permit numpy >= 2

* add iloc to DataArray

* fix from_named_objects when using Series to init

* test_from_named_objects

* test_dataarray_iloc

* ruffen
  • Loading branch information
jpn-- authored Sep 13, 2024
1 parent b491fca commit 31bc3f6
Show file tree
Hide file tree
Showing 3 changed files with 82 additions and 4 deletions.
3 changes: 1 addition & 2 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@ name = "sharrow"
requires-python = ">=3.9"
dynamic = ["version"]
dependencies = [
"numpy >= 1.19, <2",
"numpy >= 1.19",
"pandas >= 1.2",
"pyarrow",
"xarray",
Expand Down Expand Up @@ -59,7 +59,6 @@ select = [
"B", # flake8-bugbear
]
ignore = ["B905", "D1"]
ignore-init-module-imports = true
per-file-ignores = { "*.ipynb" = [
"E402", # allow imports to appear anywhere in Jupyter Notebooks
"E501", # allow long lines in Jupyter Notebooks
Expand Down
38 changes: 36 additions & 2 deletions sharrow/dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,7 +91,7 @@ def construct(source):
Parameters
----------
source : pandas.DataFrame, pyarrow.Table, xarray.Dataset, or Sequence[str]
The source from which to create a Dataset. DataFrames and Tables
The source from which to create a Dataset. DataFrame and Table objects
are converted to Datasets that have one dimension (the rows) and
separate variables for each of the columns. A list of strings
creates a dataset with those named empty variables.
Expand Down Expand Up @@ -1065,6 +1065,38 @@ def __getitem__(self, key: Mapping[Hashable, Any]) -> Dataset:
return self.dataset.isel(key)


@xr.register_dataarray_accessor("iloc")
class _iLocArrayIndexer:
"""
Purely integer-location based indexing for selection by position on 1-d DataArrays.
In many ways, a dataset with a single dimensions is like a pandas DataFrame,
with the one dimension giving the rows, and the variables as columns. This
analogy eventually breaks down (DataFrame columns are ordered, Dataset
variables are not) but the similarities are enough that it’s sometimes
convenient to have iloc functionality enabled. This only works for indexing
on the rows, but if there’s only the one dimension the complexity of isel
is not needed.
"""

__slots__ = ("dataarray",)

def __init__(self, dataarray: DataArray):
self.dataarray = dataarray

def __getitem__(self, key: Mapping[Hashable, Any]) -> DataArray:
if not is_dict_like(key):
if len(self.dataarray.dims) == 1:
dim_name = self.dataarray.dims.__iter__().__next__()
key = {dim_name: key}
else:
raise TypeError(
"can only lookup dictionaries from DataArray.iloc, "
"unless there is only one dimension"
)
return self.dataarray.isel(key)


xr.Dataset.rename_dims_and_coords = xr.Dataset.rename


Expand Down Expand Up @@ -1182,6 +1214,8 @@ def _to_ast_literal(x):
return _to_ast_literal(x.to_list())
elif isinstance(x, np.ndarray):
return _to_ast_literal(list(x))
elif isinstance(x, np.str_):
return repr(str(x))
else:
return repr(x)

Expand Down Expand Up @@ -1448,7 +1482,7 @@ def from_named_objects(*args):
raise ValueError(f"argument {n} has no name") from None
if name is None:
raise ValueError(f"the name for argument {n} is None")
objs[name] = a
objs[name] = np.asarray(a)
return xr.Dataset(objs)


Expand Down
45 changes: 45 additions & 0 deletions sharrow/tests/test_datasets.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
import numpy as np
import openmatrix
import pandas as pd
import pytest
import xarray as xr
from pytest import approx

Expand Down Expand Up @@ -133,3 +134,47 @@ def test_deferred_load_to_shared_memory():
xr.testing.assert_equal(d0, d1)
d2 = xr.Dataset.shm.from_shared_memory(token)
xr.testing.assert_equal(d0, d2)


def test_from_named_objects():
from sharrow.dataset import from_named_objects

s1 = pd.Series([1, 4, 9, 16], name="Squares")
s2 = pd.Series([2, 3, 5, 7, 11], name="Primes")
i1 = pd.Index([1, 4, 9, 16], name="Squares")
a1 = xr.DataArray([1, 4, 9, 16], name="Squares")

for obj in [s1, i1, a1]:
ds = from_named_objects(obj, s2)
assert "Squares" in ds.dims
assert "Primes" in ds.dims
assert ds.sizes == {"Squares": 4, "Primes": 5}

with pytest.raises(ValueError):
from_named_objects([1, 4, 9, 16], s2)


def test_dataarray_iloc():
arr = xr.DataArray([1, 4, 9, 16, 25, 36], name="Squares", dims="s")

assert arr.iloc[1] == 4
xr.testing.assert_equal(arr.iloc[1:], xr.DataArray([4, 9, 16, 25, 36], dims="s"))
xr.testing.assert_equal(arr.iloc[:2], xr.DataArray([1, 4], dims="s"))
xr.testing.assert_equal(arr.iloc[2:4], xr.DataArray([9, 16], dims="s"))
xr.testing.assert_equal(arr.iloc[:-2], xr.DataArray([1, 4, 9, 16], dims="s"))
xr.testing.assert_equal(arr.iloc[-2:], xr.DataArray([25, 36], dims="s"))

with pytest.raises(TypeError):
arr.iloc[1] = 5 # assignment not allowed

arr2 = xr.DataArray([2, 3, 5, 7, 11], name="Primes", dims="p")
arr2d = arr * arr2

with pytest.raises(TypeError):
_tmp = arr2d.iloc[1] # not allowed for 2D arrays

assert arr2d.iloc[dict(s=1, p=2)] == 20

z = arr2d.iloc[dict(s=slice(1, 2), p=slice(2, 4))]

xr.testing.assert_equal(z, xr.DataArray([[20, 28]], dims=["s", "p"]))

0 comments on commit 31bc3f6

Please sign in to comment.