Skip to content

Agnuxo1/AlphaChip_Integration_Quantum_Holographic_Neural_Networks

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Quantum Holographic Neural Network (QHNN)

Francisco Angulo de Lafuente

License: MIT TypeScript React TensorFlow.js Three.js

A groundbreaking implementation of a Quantum Holographic Neural Network system that combines quantum computing principles, holographic data representation, and neural network architectures for advanced processor design and optimization.

Captura de pantalla -2024-11-02 12-56-50

Features

  • Quantum Processing Unit (QPU)

    • Quantum state preparation and manipulation
    • Implementation of quantum gates and circuits
    • Quantum superposition and entanglement simulation
  • Holographic Memory Unit (HMU)

    • Efficient data storage using holographic interference patterns
    • Associative data retrieval
    • Pattern superposition and reconstruction
  • Neural Network Optimization Unit (NNOU)

    • Self-optimizing processor design
    • Reinforcement learning for chip optimization
    • Real-time performance monitoring
  • Interactive Visualization

    • 3D visualization of quantum states
    • Real-time holographic pattern display
    • Performance metrics monitoring
    • Dark/Light mode support

Installation

  1. Clone the repository: ```bash git clone https://github.com/yourusername/quantum-holographic-neural-network.git cd quantum-holographic-neural-network ```

  2. Install dependencies: ```bash npm install ```

  3. Start the development server: ```bash npm run dev ```

AlphaChip.Integration.in.Quantum.Holographic.Neural.Networks.A.Revolutionary.Approach.to.Self-Optimizing.Processor.Design.3.mp4

System Requirements

  • Node.js 16.x or higher
  • Modern web browser with WebGL support
  • 8GB RAM minimum (16GB recommended)
  • GPU with WebGL 2.0 support

Architecture

The QHNN system consists of three main components:

  1. Quantum Processing Unit (QPU)

    • Handles quantum state management
    • Implements quantum gates and circuits
    • Manages quantum entanglement
  2. Holographic Memory Unit (HMU)

    • Stores data using interference patterns
    • Provides efficient data retrieval
    • Manages pattern superposition
  3. Neural Network Optimization Unit (NNOU)

    • Optimizes processor design
    • Implements reinforcement learning
    • Monitors and improves performance

https://claude.site/artifacts/5b044849-9f82-4ee5-9e8a-911c3ae31ff1

Captura de pantalla -2024-11-02 10-37-47

Usage

Basic Implementation

```typescript import { QuantumProcessor } from './lib/quantum/QuantumProcessor'; import { HolographicMemory } from './lib/holographic/HolographicMemory';

// Initialize the quantum processor const qpu = new QuantumProcessor();

// Create and store holographic patterns const hmu = new HolographicMemory(); const pattern = createHolographicPattern(quantumState); hmu.store('pattern1', pattern);

// Process quantum states const result = qpu.processQuantumState(data); ```

Advanced Features

```typescript import { QuantumHolographicAlphaChip } from './lib/chip/AlphaChipOptimizer';

// Initialize the optimizer const optimizer = new QuantumHolographicAlphaChip(initialState);

// Get next optimization action const action = await optimizer.getNextAction();

// Apply optimization and train const newState = applyAction(currentState, action); await optimizer.trainWithPPO(currentState, action, reward, newState); ```

Captura de pantalla -2024-11-02 12-57-44

Documentation

Detailed documentation is available in the docs directory:

Contributing

We welcome contributions! Please see our Contributing Guidelines for details on how to submit pull requests, report issues, and contribute to the project.

Development Setup

  1. Fork the repository
  2. Create your feature branch (`git checkout -b feature/AmazingFeature`)
  3. Commit your changes (`git commit -m 'Add some AmazingFeature'`)
  4. Push to the branch (`git push origin feature/AmazingFeature`)
  5. Open a Pull Request

Research Paper

For a detailed technical overview of the system, please refer to our research paper: Quantum Holographic Neural Networks: A Novel Approach to Self-Optimizing Processor Design

License

This project is licensed under the MIT License - see the LICENSE file for details.

Citation

If you use this work in your research, please cite:

```bibtex @article{angulo2024quantum, title={Quantum Holographic Neural Networks: A Novel Approach to Self-Optimizing Processor Design}, author={Angulo, Francisco}, journal={arXiv preprint arXiv:2024.xxxxx}, year={2024} } ```

Acknowledgments

  • TensorFlow.js team for their machine learning framework
  • Three.js team for their 3D visualization library
  • The quantum computing research community for their foundational work

Contact

Francisco Angulo - x.com

Project Link: https://github.com/yourusername/quantum-holographic-neural-network

About

Created Francisco Angulo de Lafunte ⚡️

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages