Francisco Angulo de Lafuente
The Enhanced Unified Holographic Neural Network is an advanced AI system that combines holographic memory, neural networks, and optical computing principles. This project, developed by Francisco Angulo de Lafuente, aims to create a more efficient and powerful AI model capable of learning, storing, and retrieving information in a manner inspired by the human brain and holographic principles.
- Holographic memory for efficient information storage and retrieval
- Neural network architecture for learning and pattern recognition
- Optical computing simulation for enhanced processing capabilities
- P2P network integration for distributed learning and knowledge sharing
- Real-time learning and prediction capabilities
- Integration with external LLM models for enhanced text generation
- File processing capabilities (TXT and PDF) for knowledge ingestion
- Interactive 3D visualization of the neural network
The EUHNN utilizes NVIDIA's Ray Tracing and CUDA technologies to simulate the optical neural network efficiently. Key aspects of the implementation include:
Ray Tracing: A Monte Carlo path tracing algorithm simulates the propagation of light through the holographic memory and neural network elements. The optical elements are modeled as a combination of refractive and diffractive surfaces. Lenses are simulated using thin lens approximations, while diffraction gratings are modeled using phase functions that alter the direction of incident rays based on their wavelength.
CUDA: CUDA kernels are implemented to accelerate complex optical operations such as convolutions and Fourier transforms. This allows for highly parallel computations on the GPU, significantly improving performance. Custom CUDA kernels are also used to simulate wave propagation effects and interference patterns critical for holographic computations.
RTX Hardware: The project takes advantage of RTX hardware features like RT Cores for accelerated ray-triangle intersection tests, Tensor Cores for matrix operations in neural network layers, and specialized hardware for denoising the Monte Carlo rendered results. This combination of features allows for real-time simulation of complex optical phenomena within the neural network architecture. The integration of these technologies enables the EUHNN to perform optical neural computations at speeds comparable to traditional electronic neural networks while maintaining the advantages of optical processing, such as reduced power consumption and increased parallelism.
- React for the frontend user interface
- Three.js and React Three Fiber for 3D visualizations
- Node.js for backend processing
- WebRTC (via PeerJS) for P2P networking
- PDF.js for PDF file processing
- LocalForage for client-side storage
-
Clone the repository:
git clone https://github.com/username/enhanced-holographic-neural-network.git
-
Navigate to the project directory:
cd enhanced-holographic-neural-network
-
Install dependencies:
npm install
-
Start the development server:
npm run dev
-
Open your browser and navigate to
http://localhost:3000
to view the application.
-
Chat Interface: Use the chat interface to interact with the AI. Type your messages and receive responses generated by the holographic neural network.
-
Learning: Use the learning interface to teach the AI new associations between inputs and outputs.
-
File Processing: Upload TXT or PDF files to ingest new knowledge into the system.
-
Knowledge Management: Save and load the AI's knowledge base using the provided buttons.
-
Training: Use the training button to run the AI through a series of random inputs and outputs to enhance its knowledge.
-
P2P Networking: Connect with other instances of the application to share and distribute knowledge across the network.
-
3D Visualization: Observe the real-time 3D representation of the neural network, including neurons, connections, and context nodes.
DEMO: https://v0.dev/chat/kyvoEEtAEU2
DEMO-1: https://b_ic1rgwmt8fv.v0.build/
DEMO-2: https://b_1eghmy2q0il.v0.build/
Nebula-Space-s.mp4
DEMO 2D: https://v0.dev/chat/zxua26lZsnT?b=Nb1RXgPNUa8
DEMO 3D: https://stackblitz.com/edit/sb1-evxclo?embed=1&file=package.json
The Holographic Quantum RAG Nebula presents a visually compelling and interactive way to represent and explore knowledge extracted from text. The simulation of quantum effects enhances the retrieval process and provides a novel way to conceptualize relationships between words and concepts.
Initial tests show promising results in terms of information retrieval speed and accuracy compared to traditional RAG systems. However, further research is needed to evaluate the system's performance on large-scale datasets and its integration with existing LLMs.
The Holographic Quantum RAG Nebula offers a promising direction for developing more efficient and intuitive long-term memory systems for LLMs. Future work will focus on:
- Integrating with existing LLMs to evaluate performance in real-world applications.
- Scaling the system to handle larger datasets efficiently.
- Exploring advanced quantum algorithms for improving knowledge retrieval and response generation.
- Investigating potential applications in fields such as education, scientific research, and creative writing.
-
Gabor, D. (1948). A New Microscopic Principle. Nature, 161(4098), 777-778.
-
van Heerden, P. J. (1963). Theory of Optical Information Storage in Solids. Applied Optics, 2(4), 393-400.
-
Pribram, K. H. (1969). The Neurophysiology of Remembering. Scientific American, 220(1), 73-86.
-
Deutsch, D. (1985). Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 400(1818), 97-117.
-
Shor, P. W. (1994). Algorithms for Quantum Computation: Discrete Logarithms and Factoring. Proceedings 35th Annual Symposium on Foundations of Computer Science, 124-134.
-
Grover, L. K. (1996). A Fast Quantum Mechanical Algorithm for Database Search. Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, 212-219.
-
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is All You Need. Advances in Neural Information Processing Systems, 30.
-
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv preprint arXiv:1810.04805.
-
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). Language Models are Few-Shot Learners. arXiv preprint arXiv:2005.14165.
-
Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., ... & Kiela, D. (2020). Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. Advances in Neural Information Processing Systems, 33, 9459-9472.
-
Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T., Foster, C., ... & Leahy, C. (2020). The Pile: An 800GB Dataset of Diverse Text for Language Modeling. arXiv preprint arXiv:2101.00027.
-
Beltagy, I., Peters, M. E., & Cohan, A. (2020). Longformer: The Long-Document Transformer. arXiv preprint arXiv:2004.05150.
-
Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J., Alberti, C., Ontanon, S., ... & Ahmed, A. (2020). Big Bird: Transformers for Longer Sequences. Advances in Neural Information Processing Systems, 33, 17283-17297.
-
Borgeaud, S., Mensch, A., Hoffmann, J., Cai, T., Rutherford, E., Millican, K., ... & Sifre, L. (2022). Improving Language Models by Retrieving from Trillions of Tokens. arXiv preprint arXiv:2112.04426.
-
Izacard, G., Grave, E., Joulin, A., & Usunier, N. (2022). Few-shot Learning with Retrieval Augmented Language Models. arXiv preprint arXiv:2208.03299.
Contributions to the Enhanced Unified Holographic Neural Network project are welcome. Please follow these steps to contribute:
- Fork the repository
- Create a new branch (
git checkout -b feature/your-feature-name
) - Commit your changes (
git commit -am 'Add some feature'
) - Push to the branch (
git push origin feature/your-feature-name
) - Create a new Pull Request
This project is licensed under the MIT License. See the LICENSE file for details.
Francisco Angulo de Lafuente
Project Link: https://youtu.be/29xr5okUZ54?si=XIW2rNyYxMpRWXx-
- NVIDIA for their cutting-edge AI technologies and APIs
- The open-source community for providing invaluable tools and libraries
- All contributors and researchers in the fields of neural networks, holographic memory, and optical computing
Una implementación en Python de una Red Neural Holográfica Mejorada con capacidades de procesamiento de lenguaje natural, aprendizaje distribuido y comunicación P2P.
- Red Neural Holográfica con capacidades de aprendizaje avanzado
- Implementación nativa de tecnologías NVIDIA (NeMo, RAG)
- Sistema de chat con procesamiento de lenguaje natural
- Comunicación P2P para aprendizaje distribuido
- Procesamiento de documentos PDF
- Interfaz web con FastAPI
- Sistema de gestión de conocimiento persistente
- Python 3.9+
- CUDA compatible GPU (recomendado)
- Dependencias listadas en requirements.txt
- Clonar el repositorio:
git clone https://github.com/tuusuario/enhanced-holographic-neural-network-py.git
cd enhanced-holographic-neural-network-py
- Crear un entorno virtual:
python -m venv venv
source venv/bin/activate # En Windows: venv\Scripts\activate
- Instalar dependencias:
pip install -r requirements.txt
- Iniciar el servidor:
python main.py
- Acceder a la interfaz web:
http://localhost:8000
python_version/
├── main.py # Punto de entrada principal
├── requirements.txt # Dependencias del proyecto
├── README.md # Documentación
├── config/ # Configuraciones
├── models/ # Modelos de IA
│ ├── hnn/ # Implementación de la Red Neural Holográfica
│ ├── nemo/ # Implementaciones de NeMo
│ └── rag/ # Implementación de RAG
├── api/ # API REST
├── utils/ # Utilidades
└── web/ # Interfaz web
MIT