Skip to content

Detecting Traffic Law Violation Using Pre-Trained YOLOv8 Model and OpenCV: a Case of Red-Light Running

Notifications You must be signed in to change notification settings

AhdaArif/ETLE-with-YOLOv8

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Computer Vision Project

Detecting Traffic Law Violators Running through Red Light Using Pre-Trained YOLOv8 Model


Pre-Requisites:

  1. Python 3.9
  2. Terminal (Windows PowerShell)
  3. IDE (Microsoft Visual Studio Code)

How to Use This:

  1. Clone this repository

    git clone git@github.com:AhdaArif/YOLOv8.git
  2. Generate virtual environment

    py -3.9 -m venv Env
  3. Activate the environment

    ./Env/Scripts/Activate.ps1
  4. Install Numpy

    py install numpy
  5. Downgrade the PIP to the version 21.1.1

    ./Env/Scripts/python.exe -m pip install pip==21.1.1
  6. Install LAP

    pip install lap
  7. Reupgrade the PIP to the latest

    ./Env/Scripts/python.exe -m pip install -U pip
  8. Install PyTorch with CUDA support or not

    For CUDA-capable system:

    pip install torch torchvision --index-url https://download.pytorch.org/whl/cu118

    For just of CPU use, without GPU acceleration:

    pip install torch torchvision
  9. Install Ultralytics

    pip install ultralytics

About

Detecting Traffic Law Violation Using Pre-Trained YOLOv8 Model and OpenCV: a Case of Red-Light Running

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages