MonoBehaviour Life Cycle Flow Chart
// MonoBehaviour is the base class from which every Unity script derives.
// Offers some life cycle functions that are easier for you to develop your game.
// Some of the most frequently used ones are as follows;
Awake()
Start()
Update()
FixedUpdate()
LateUpdate()
OnGUI()
OnEnable()
OnDisable()
// Every object in a Scene has a Transform.
// It's used to store and manipulate the position, rotation and scale of the object.
transform.position.x = 0;
// Vector3 is representation of 3D vectors and points
// It's used to represent 3D positions,considering x,y & z axis.
Vector3 v = new Vector3(0f, 0f, 0f);
// A Quaternion stores the rotation of the Transform in world space.
// Quaternions are based on complex numbers and don't suffer from gimbal lock.
// Unity internally uses Quaternions to represent all rotations.
// You almost never access or modify individual Quaternion components (x,y,z,w);
// A rotation 30 degrees around the y-axis
Quaternion rotation = Quaternion.Euler(0, 30, 0);
// Euler angles are "degree angles" like 90, 180, 45, 30 degrees.
// Quaternions differ from Euler angles in that they represent a point on a Unit Sphere (the radius is 1 unit).
// Create a quaternion that represents 30 degrees about X, 10 degrees about Y
Quaternion rotation = Quaternion.Euler(30, 10, 0);
// Using a Vector
Vector3 EulerRotation = new Vector3(30, 10, 0);
Quaternion rotation = Quaternion.Euler(EulerRotation);
// Convert a transform's Quaternion angles to Euler angles
Quaternion quaternionAngles = transform.rotation;
Vector3 eulerAngles = quaternionAngles.eulerAngles;
// Moves the transform in the direction and distance of translation.
public void Translate(Vector3 translation);
public void Translate(Vector3 translation, Space relativeTo = Space.Self);
transform.Translate(Vector3.right * movementSpeed);
// Calculate a position between the points specified by current and target
// Moving no farther than the distance specified by maxDistanceDelta
public static Vector3 MoveTowards(Vector3 current, Vector3 target, float maxDistanceDelta);
Vector3 targetPosition;
transform.position = Vector3.MoveTowards(transform.position, targetPosition, Time.deltaTime);
// Linearly interpolates between two points. Results in a smooth transition.
public static Vector3 Lerp(Vector3 startValue, Vector3 endValue, float interpolationRatio);
Vector3 targetPosition;
float t = 0;
t += Time.deltaTime * speed;
transform.position = Vector3.Lerp(transform.position, targetPosition, t);
// Gradually changes a vector towards a desired goal over time.
// The vector is smoothed by some spring-damper like function, which will never overshoot.
// The most common use is for smoothing a follow camera.
public static Vector3 SmoothDamp(Vector3 current, Vector3 target, ref Vector3 currentVelocity, float smoothTime, float maxSpeed = Mathf.Infinity, float deltaTime = Time.deltaTime);
float smoothTime = 1f;
Vector3 velocity;
Vector3 targetPosition = target.TransformPoint(new Vector3(0, 5, -10));
// Smoothly move the camera towards that target position
transform.position = Vector3.SmoothDamp(transform.position, targetPosition, ref velocity, smoothTime);
// A Quaternion stores the rotation of the Transform in world space.
// Quaternions are based on complex numbers and don't suffer from gimbal lock.
// Unity internally uses Quaternions to represent all rotations.
transform.rotation = new Quaternion(rotx, roty, rotz, rotw);
// Transform.eulerAngles represents rotation in world space.
// It is important to understand that although you are providing X, Y, and Z rotation values to describe your rotation
// those values are not stored in the rotation. Instead, the X, Y & Z values are converted to the Quaternion's internal format.
transform.eulerAngles = Vector3(rotx, roty, rotz);
// Applies rotation around all the given axes.
public void Rotate(Vector3 eulers, Space relativeTo = Space.Self);
public void Rotate(float xAngle, float yAngle, float zAngle, Space relativeTo = Space.Self);
transform.Rotate(rotx, roty, rotz);
// Rotates the transform about axis passing through point in world coordinates by angle degrees.
public void RotateAround(Vector3 point, Vector3 axis, float angle);
// Spin the object around the target at 20 degrees/second.
Transform target;
transform.RotateAround(target.position, Vector3.up, 20 * Time.deltaTime);
// Points the positive 'Z' (forward) side of an object at a position in world space.
public void LookAt(Transform target);
public void LookAt(Transform target, Vector3 worldUp = Vector3.up);
// Rotate the object's forward vector to point at the target Transform.
Transform target;
transform.LookAt(target);
// Same as above, but setting the worldUp parameter to Vector3.left in this example turns the object on its side.
transform.LookAt(target, Vector3.left);
// Creates a rotation with the specified forward and upwards directions.
public static Quaternion LookRotation(Vector3 forward, Vector3 upwards = Vector3.up);
// The following code rotates the object towards a target object.
Vector3 direction = target.position - transform.position;
Quaternion rotation = Quaternion.LookRotation(direction);
transform.rotation = rotation;
// Creates a rotation (a Quaternion) which rotates from fromDirection to toDirection.
public static Quaternion FromToRotation(Vector3 fromDirection, Vector3 toDirection);
// Sets the rotation so that the transform's y-axis goes along the z-axis.
transform.rotation = Quaternion.FromToRotation(Vector3.up, transform.forward);
// Converts a rotation to angle-axis representation (angles in degrees).
// In other words, extracts the angle as well as the axis that this quaternion represents.
public void ToAngleAxis(out float angle, out Vector3 axis);
// Extracts the angle - axis rotation from the transform rotation
float angle = 0.0f;
Vector3 axis = Vector3.zero;
transform.rotation.ToAngleAxis(out angle, out axis);
void FixedUpdate() {
// Bit shift the index of the layer (8) to get a bit mask
int layerMask = 1 << 8;
// This would cast rays only against colliders in layer 8.
// But instead we want to collide against everything except layer 8. The ~ operator does this, it inverts a bitmask.
layerMask = ~layerMask;
RaycastHit hit;
// Does the ray intersect any objects excluding the player layer
if (Physics.Raycast(transform.position, transform.TransformDirection(Vector3.forward), out hit, Mathf.Infinity, layerMask)) {
Debug.DrawRay(transform.position, transform.TransformDirection(Vector3.forward) * hit.distance, Color.yellow);
Debug.Log("Did Hit");
}
}
// Makes the collision detection system ignore all collisions between collider1 and collider2.
public static void IgnoreCollision(Collider collider1, Collider collider2, bool ignore = true);
// Here we're disabling the collision detection between the colliders of ally and bullet objects.
Transform bullet;
Transform ally;
Physics.IgnoreCollision(bullet.GetComponent<Collider>(), ally.GetComponent<Collider>());
// Returns true during the frame the user starts pressing down the key
if (Input.GetKeyDown(KeyCode.Space)) {
Debug.Log("Space key was pressed");
}
// Jump is also set to space in Input Manager
if (Input.GetButtonDown("Jump")) {
Debug.Log("Do something");
}
if (Input.GetAxis("Mouse X") < 0) {
Debug.Log("Mouse moved left");
}
if (Input.GetAxis("Mouse Y") > 0) {
Debug.Log("Mouse moved up");
}
if (Input.GetMouseButtonDown(0)) {
Debug.Log("Pressed primary button.");
}
if (Input.GetMouseButtonDown(1)) {
Debug.Log("Pressed secondary button.");
}
if (Input.GetMouseButtonDown(2)) {
Debug.Log("Pressed middle click.");
}
if (Input.touchCount > 0) {
touch = Input.GetTouch(0);
if (touch.phase == TouchPhase.Began) {
Debug.Log("Touch began");
}
if (touch.phase == TouchPhase.Moved) {
Debug.Log("Touch moves");
}
if (touch.phase == TouchPhase.Ended) {
Debug.Log("Touch ended");
}
}
public class PlayAudio : MonoBehaviour {
public AudioSource audioSource;
void Start() {
// Calling Play on an Audio Source that is already playing will make it start from the beginning
audioSource.Play();
}
}
// Define singleton class
public class SingletonClass: MonoBehaviour {
private static SomeClass instance;
public static SomeClass Instance { get { return instance; } }
private void Awake() {
if (instance != null && instance != this) {
Destroy(this.gameObject);
} else {
instance = this;
}
}
}
// Use it in another class
public class AnotherClass: MonoBehaviour {
public Singleton instance;
private void Awake() {
instance = Singleton.Instance;
}
}
RaycastHit hit;
// Unlike this example, most of the time you should pass a layerMask as the last option to hit only to the ground
if (Physics.Raycast(transform.position, -Vector3.up, out hit, 0.5f)) {
Debug.log("Hit something below!");
}
Animator animator;
Transform transform = animator.GetBoneTransform(HumanBodyBones.Head);
var camPosition = Camera.main.transform.position;
transform.rotation = Quaternion.LookRotation(transform.position - camPosition);
var nextSceneToLoad = SceneManager.GetActiveScene().buildIndex + 1;
var totalSceneCount = SceneManager.sceneCountInBuildSettings;
if (nextSceneToLoad < totalSceneCount) {
SceneManager.LoadScene(nextSceneToLoad);
}