Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Automated Financial Reporting #1007

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
78 changes: 78 additions & 0 deletions Finacial Domain/Automated Financial Reporting/app.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,78 @@
import streamlit as st
import pandas as pd
import numpy as np
import tensorflow as tf
from sklearn.preprocessing import MinMaxScaler

# Load the dataset
df = pd.read_csv('financial_data.csv')
df['Date'] = pd.to_datetime(df['Date'])

# Load the trained model
model = tf.keras.models.load_model('financial_model.h5')

# Normalize the data using the same scaler as during training
scaler = MinMaxScaler()
data_scaled = scaler.fit_transform(df.drop('Date', axis=1))

# Prepare features and target
X = data_scaled[:, :-1]
y = data_scaled[:, -1]

# Make predictions
y_pred = model.predict(X)
y_pred_original = scaler.inverse_transform(np.c_[X, y_pred])[:, -1]

# Add predictions to the DataFrame
df['Predicted_Equity'] = y_pred_original

# Streamlit app
st.title("Automated Financial Reporting with Deep Learning")

st.write("""
### Actual vs Predicted Equity Values
""")

# Display a sample of the actual vs predicted values
comparison = pd.DataFrame({
'Actual': df['Equity'],
'Predicted': df['Predicted_Equity']
})

st.write(comparison.head())

# Plot the actual vs predicted values
st.line_chart(comparison)

# Display the model's performance metrics
st.write(f"Test Loss: 0.08456173539161682, Test MAE: 0.2604014575481415")

st.write("""
### Training Metrics
""")

# Display the training metrics
training_metrics = {
"Epoch": list(range(1, 11)),
"Training Loss": [0.4236, 0.3555, 0.3024, 0.2610, 0.2237, 0.1883, 0.1559, 0.1281, 0.1029, 0.0861],
"Training MAE": [0.5733, 0.5171, 0.4694, 0.4267, 0.3849, 0.3473, 0.3104, 0.2799, 0.2553, 0.2352],
"Validation Loss": [0.3441, 0.2862, 0.2406, 0.2011, 0.1643, 0.1300, 0.1004, 0.0776, 0.0596, 0.0456],
"Validation MAE": [0.5352, 0.4826, 0.4356, 0.3896, 0.3425, 0.3015, 0.2623, 0.2264, 0.1929, 0.1670]
}

metrics_df = pd.DataFrame(training_metrics)
st.line_chart(metrics_df[['Training Loss', 'Validation Loss']])
st.line_chart(metrics_df[['Training MAE', 'Validation MAE']])

st.write("""
### Summary Statistics
""")

# Display summary statistics
summary = df.describe()
st.write(summary)

# Save the report to a CSV file
df.to_csv('financial_report.csv', index=False)
summary.to_csv('financial_summary.csv')
st.write("Financial report and summary generated successfully. Check the generated CSV files for details.")
49 changes: 49 additions & 0 deletions Finacial Domain/Automated Financial Reporting/financial_data.csv
Original file line number Diff line number Diff line change
@@ -0,0 +1,49 @@
Date,Revenue,Expenses,Profit,Assets,Liabilities,Equity
2020-01-31,24981.6047538945,13200.654190149195,11780.950563745304,309093.13175279764,106968.09887549352,202125.03287730413
2020-02-29,48028.57225639665,7772.816832882905,40255.75542351374,271016.40734341985,57377.38947090656,213639.0178725133
2020-03-31,39279.7576724562,19543.769416468378,19735.988255987824,110167.65069763808,171912.86679597938,-61745.216098341305
2020-04-30,33946.33936788146,16626.992350416716,17319.347017464745,143156.5707973218,150535.8046457723,-7379.233848450502
2020-05-31,16240.745617697461,19092.484123462837,-2851.7385057653755,112571.6742746937,60295.75024999787,52275.92402469582
2020-06-30,16239.780813448106,18422.410256414732,-2182.629442966627,354564.16450551216,105729.29284732229,248834.87165818986
2020-07-31,12323.34448672798,13968.499682166277,-1645.1551954382976,225742.3924305307,231653.17719333075,-5910.78476280006
2020-08-31,44647.045830997406,18828.11352534675,25818.932305650655,303428.27646588115,97912.3781333945,205515.89833248666
2020-09-30,34044.60046972835,6327.387530778793,27717.212938949557,463026.5895704372,78978.97441824462,384047.6151521926
2020-10-31,38322.90311184182,7939.742936287178,30383.160175554644,199716.89165954996,147890.5520555126,51826.33960403735
2020-11-30,10823.379771832098,5678.409333658071,5144.970438174028,264153.1692142519,247130.09082212014,17023.078392131778
2020-12-31,48796.39408647977,9879.954961448966,38916.4391250308,402220.4554172195,98411.05430230008,303809.4011149194
2021-01-31,43297.70563201687,10830.15934534223,32467.54628667464,191519.266196649,184427.10948117572,7092.156715473277
2021-02-28,18493.564427131045,9070.235476608439,9423.328950522606,130791.9639315172,202323.92306574353,-71531.95913422633
2021-03-31,17272.998688284024,17431.06263727894,-158.06394899491715,215900.5811655072,97527.50879847993,118373.07236702727
2021-04-30,17336.18039413735,10351.29990040384,6984.880493733512,164488.51490160177,195643.26972237192,-31154.754820770147
2021-05-31,22169.68971838151,9214.017645310712,12955.672073070797,471879.06093702925,123556.62654385064,348322.4343931786
2021-06-30,30990.257265289514,13140.441247373727,17849.816017915786,423248.1518257668,176461.1661187159,246786.9857070509
2021-07-31,27277.80074568463,7113.86337462144,20163.93737106319,353361.5026041694,176705.94215217893,176655.5604519905
2021-08-31,21649.165607921677,17032.954711310595,4616.210896611083,448584.2360750871,157154.9368149517,291429.2992601354
2021-09-30,34474.11578889518,6118.259655196563,28355.856133698617,421468.8307596458,68057.95401088166,353410.87674876413
2021-10-31,15579.754426081672,19803.304049007762,-4223.54962292609,174628.02355441434,217060.4991178476,-42432.475563433254
2021-11-30,21685.78594140873,16583.67153944986,5102.114401958868,457023.5993959911,114156.01299434717,342867.58640164393
2021-12-31,24654.47373174767,7980.735223012586,16673.73850873508,315736.89676626027,87303.70207997086,228433.1946862894
2022-01-31,28242.799368681437,5082.831756854036,23159.9676118274,422976.06206562504,58155.02831095278,364821.0337546723
2022-02-28,41407.03845572054,17231.92142682251,24175.11702889803,458436.5199693973,168178.58863764838,290257.9313317489
2022-03-31,17986.95128633439,15602.860157714256,2384.0911286201354,227201.38998874556,185512.87236845648,41688.51762028909
2022-04-30,30569.377536544464,15935.107520614809,14634.270015929655,144020.7698110707,53317.56578557123,90703.20402549946
2022-05-31,33696.5827544817,16569.055200289185,17127.527554192515,191174.06501677667,152418.6116598562,38755.45335692048
2022-06-30,11858.016508799908,6110.669776011356,5747.346732788553,270843.1154505025,95299.15503958758,175543.9604109149
2022-07-31,34301.79407605753,10376.98592816409,23924.80814789344,427205.90636899724,179034.55808189,248171.34828710725
2022-08-31,16820.964947491662,6738.035892876946,10082.929054614717,444292.23330253735,84873.28580099829,359418.9475015391
2022-09-30,12602.06371941118,17946.551388133903,-5344.487668722722,102780.85221247628,188187.5476204932,-85406.69540801691
2022-10-31,47955.42149013333,14349.471902413368,33605.949587719966,304298.9210310263,127347.06926010748,176951.85177091882
2022-11-30,48625.28132298237,9963.470372789738,38661.81095019264,266964.4012595116,237345.9977473469,29618.40351216469
2022-12-31,42335.89392465845,5953.375254290355,36382.518670368096,188843.1241882921,77504.18882919865,111338.93535909345
2023-01-31,22184.55076693483,9664.734825734933,12519.815941199897,147946.14693347312,118213.2702100517,29732.876723421417
2023-02-28,13906.884560255356,9877.749830401206,4029.1347298541496,235046.0685614512,72694.7042481178,162351.36431333338
2023-03-31,37369.321060486276,15944.09267507096,21425.228385415314,477163.8815650077,234938.72365571256,242225.1579092951
2023-04-30,27606.099749584053,14563.362070328198,13042.737679255855,229281.1728083021,225467.8706761962,3813.3021321058914
2023-05-31,14881.529393791152,18308.1911386449,-3426.661744853747,307516.2486973464,101588.32554303113,205927.9231543153
2023-06-30,29807.076404450807,12083.223877429238,17723.85252702157,381207.5835580711,181996.8092068358,199210.7743512353
2023-07-31,11375.540844608735,6793.913689074526,4581.627155534209,245451.8409517176,213444.44004024318,32007.400911474426
2023-08-31,46372.81608315128,15698.671808344925,30674.144274806356,488712.83308838424,161040.16231989246,327672.6707684918
2023-09-30,20351.19926400068,16411.775729253462,3939.4235347472168,484978.9179768445,155930.11567120132,329048.80230564316
2023-10-31,36500.891374159284,13419.157963542444,23081.733410616842,200712.91833014565,98370.45818009034,102342.46015005531
2023-11-30,22468.443043576437,16564.507699318416,5903.935344258021,298899.4023569542,68620.55356117984,230278.84879577433
2023-12-31,30802.720847112432,12406.933945465862,18395.78690164657,220351.32392670785,229443.15159066534,-9091.82766395749
Loading