Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

here is my MRF stock EDA app #909

Merged
merged 2 commits into from
Aug 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
107 changes: 107 additions & 0 deletions Financial APIs/MRF stock EDA app/ EDA app.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,107 @@
import pandas as pd
import matplotlib.pyplot as plt
import gradio as gr
import os
import numpy as np

# Define the path to the CSV file
csv_file_path = 'MRF.NS.csv'

def visualize_eda(start_date, end_date):
# Create a directory to save plots
if not os.path.exists('eda_plots'):
os.makedirs('eda_plots')

# Initialize output paths
line_plot_path = 'eda_plots/line_plot.png'
bar_plot_path = 'eda_plots/bar_plot.png'
hist_plot_path = 'eda_plots/hist_plot.png'
scatter_plot_path = 'eda_plots/scatter_plot.png'

# Load the data from the CSV file
try:
df = pd.read_csv(csv_file_path, parse_dates=True, index_col=0)
except Exception as e:
return [None, None, None, None, f"Error loading CSV file: {e}"]

# Filter the data by the given date range
try:
df = df.loc[start_date:end_date]
except Exception as e:
return [None, None, None, None, f"Error filtering data: {e}"]

# Check for and handle non-numeric columns
df_numeric = df.select_dtypes(include=['float64', 'int64'])
if df_numeric.empty:
return [None, None, None, None, "Error: No numeric data found in CSV file."]

# Plot 1: Line plot of all numerical features
try:
plt.figure(figsize=(12, 6))
for column in df_numeric.columns:
plt.plot(df_numeric.index, df_numeric[column], label=column)
plt.title('Line Plot of Numerical Features')
plt.xlabel('Date')
plt.ylabel('Value')
plt.legend()
plt.savefig(line_plot_path)
plt.close()
except Exception as e:
return [None, None, None, None, f"Error generating line plot: {e}"]

# Plot 2: Bar plot of average values per month
try:
plt.figure(figsize=(12, 6))
monthly_avg = df_numeric.resample('M').mean()
monthly_avg.plot(kind='bar', figsize=(15, 7))
plt.title('Monthly Average of Numerical Features')
plt.xlabel('Month')
plt.ylabel('Average Value')
plt.savefig(bar_plot_path)
plt.close()
except Exception as e:
return [None, None, None, None, f"Error generating bar plot: {e}"]

# Plot 3: Histogram of numerical features
try:
plt.figure(figsize=(12, 6))
df_numeric.hist(bins=30, figsize=(15, 7))
plt.suptitle('Histogram of Numerical Features')
plt.savefig(hist_plot_path)
plt.close()
except Exception as e:
return [None, None, None, None, f"Error generating histogram: {e}"]

# Plot 4: Scatter plot matrix of numerical features
try:
from pandas.plotting import scatter_matrix
plt.figure(figsize=(12, 12))
scatter_matrix(df_numeric, alpha=0.2, figsize=(15, 15), diagonal='kde')
plt.suptitle('Scatter Plot Matrix of Numerical Features')
plt.savefig(scatter_plot_path)
plt.close()
except Exception as e:
return [None, None, None, None, f"Error generating scatter plot matrix: {e}"]

# Return paths to generated plots
return [line_plot_path, bar_plot_path, hist_plot_path, scatter_plot_path, None]

# Define the Gradio interface
iface = gr.Interface(
fn=visualize_eda,
inputs=[
gr.Textbox(label="Start Date (YYYY-MM-DD)", value="2002-01-02"),
gr.Textbox(label="End Date (YYYY-MM-DD)", value="2022-10-10")
],
outputs=[
gr.Image(type="filepath", label="Line Plot"),
gr.Image(type="filepath", label="Bar Plot"),
gr.Image(type="filepath", label="Histogram"),
gr.Image(type="filepath", label="Scatter Plot Matrix"),
gr.Textbox(label="Error Message", type="text") # Add a textbox for error messages
],
live=False # This will add an explicit "Submit" button
)

# Launch the Gradio app
iface.launch(share=True, inbrowser=True)
Loading
Loading