Skip to content

Al-Borno-Lab/mousearm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

44 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Demo

STEP 1: Install Anaconda

Download the executable from this link then follow the instructions there to install Anaconda.

STEP 1: Create a new Conda environment

In an Anaconda terminal, run conda create -n "mousearm-test python=3.11 -y" or any environment name.
Activate the environment with conda activate mousearm-test.

STEP 2: Install opensim via conda

Windows/Linux: conda install -c opensim-org opensim.
macOS (Apple Silicon): CONDA_SUBDIR=osx-64 conda install -c opensim-org opensim.

STEP 3: Go to your Documents folder

Windows: cd %USERPROFILE%\Documents. Linux/macOS: cd ~/Documents.

STEP 4: Clone this git repo and install the library

Run the following in the Anaconda terminal:

# Using SSH:
git clone git@github.com:Al-Borno-Lab/mousearm.git

# OR using HTTPS:
git clone https://github.com/Al-Borno-Lab/mousearm.git

cd mousearm
pip install uv'

uv pip install -e .

STEP 5: Run the demo

To do this, run:

cd mousearm/Demo
python demo.py

Sample Usage

STEP 5: Place your data folder anywhere with the following format (any number of reachsets)

Data/
├── reachset_1/
│   └── kinematics_1.csv
└── reachset_2/
    └── kinematics_1.csv

Then, in a separate anaconda terminal, cd into the parent directory of the Data folder.

In a new python file in the same folder as the Data folder, enter:

from mousearm.simulate import run_simulation
run_simulation("Data", nReachSets=2) # Adjust nReachSets accordingly

Then, run it using python run from the parent directory of the Data folder.

Data Formatting

Process the motion capture data through DeepLabCut. The output file will have more data than necessary, so delete everything except time, paw (x,y,z), wrist (x,y,z), shoulder (x,y,z), elbow (x,y,z). At the end, the csv file should look like the following:
Example input file

After formatting, the data folder should be formatted like this:

RawData/
└── reachsets/
    ├── reachset_1/
    │   └── kinematics_1.csv
    ├── reachset_2/
    │   └── kinematics_1.csv
    └── ...

Output File Processing

The important output files are muscle_solution and the muscle_kinematics:

  • muscle_solution shows the solution that the model found for the movement. These can be visualized in OpenSim to observe the movement and predicted muscle actuations.
  • muscle_kinematics shows the difference between the captured movement and the movement predicted by the model

These files can both be imported into a pandas dataframe for further analysis with the below python code. The directory should be structured like this:

RawData/
└── reachsets/
    ├── reachset_1/
    │   ├── muscle_solution_adjusted_kinematics_1.sto
    │   └── muscle_kinematics_adjusted_kinematics_1.csv
    ├── reachset_2/
    │   ├── muscle_solution_adjusted_kinematics_1.sto
    │   └── muscle_kinematics_adjusted_kinematics_1.csv
    └── ...
import pandas as pd
import glob
import numpy as np
base_dir = "../../RawData/reachsets/" # Adjust this path to yours
save_dir = "../../Data/" # Adjust this path to yours
mcolnames = ["time", "/jointset/shoulder/elv_angle/value", "/jointset/shoulder/extension_angle/value", "/jointset/shoulder/rotation_angle/value", "/jointset/humerus_ulna/elbow_flex/value", "/jointset/ulna_radius_pj/radius_rot/value", "/jointset/wrist/wrist_angle/value", "/jointset/shoulder/elv_angle/speed", "/jointset/shoulder/extension_angle/speed", "/jointset/shoulder/rotation_angle/speed", "/jointset/humerus_ulna/elbow_flex/speed", "/jointset/ulna_radius_pj/radius_rot/speed", "/jointset/wrist/wrist_angle/speed", "/forceset/Pectoralis_Clavicle_Head/activation", "/forceset/Biceps_Short_Head/activation", "/forceset/Biceps_Long_Head/activation", "/forceset/Deltoid_Medial/activation", "/forceset/Triceps_Lat_Head/activation", "/forceset/Triceps_Long_Head/activation", "/forceset/Brachialis_Proximal_Head/activation", "/forceset/Brachialis_Distal_Head/activation", "/forceset/Anconeus/activation", "/forceset/Deltoid_Posterior/activation", "/forceset/Anconeus_Short_Head/activation", "/forceset/Subscapularis_SuperiorHead/activation", "/forceset/Infraspinatus/activation", "/forceset/PronatorTeres/activation", "/forceset/FlexorCarpiRadialis/activation", "/forceset/Brachioradialis/activation", "/forceset/Triceps_Medial_Head/activation", "/forceset/Latissimus_Dorsi_Rostral/activation", "/forceset/Latissimus_Dorsi_Caudal/activation", "/forceset/Pectoralis_Major_Anterior/activation", "/forceset/Pectoralis_Major_Posterior/activation", "/forceset/Pectoralis_Clavicle_Head", "/forceset/Biceps_Short_Head", "/forceset/Biceps_Long_Head", "/forceset/Deltoid_Medial", "/forceset/Triceps_Lat_Head", "/forceset/Triceps_Long_Head", "/forceset/Brachialis_Proximal_Head", "/forceset/Brachialis_Distal_Head", "/forceset/Anconeus", "/forceset/Deltoid_Posterior", "/forceset/Anconeus_Short_Head", "/forceset/Subscapularis_SuperiorHead", "/forceset/Infraspinatus", "/forceset/PronatorTeres", "/forceset/FlexorCarpiRadialis", "/forceset/Brachioradialis", "/forceset/Triceps_Medial_Head", "/forceset/Latissimus_Dorsi_Rostral", "/forceset/Latissimus_Dorsi_Caudal", "/forceset/Pectoralis_Major_Anterior", "/forceset/Pectoralis_Major_Posterior"]
kcolnames = ["time","paw_x","paw_y","paw_z","elbow_x","elbow_y","elbow_z"]

def getMu(which_sets):
    mu = pd.DataFrame();
    for set in which_sets:
        for file in glob.glob(base_dir+"reachset_"+str(set)+"/muscle_sol*"):
            tdf = pd.read_csv(file, sep= r'\t',engine='python', header=18, names=mcolnames, index_col=None)
            mu = pd.concat([mu,tdf], ignore_index=True)
    return mu

def getKin(which_sets):
    kin = pd.DataFrame();
    for set in which_sets:
        for file in glob.glob(base_dir+"reachset_"+str(set)+"/muscle_kinematics_*"):
            tdf = pd.read_csv(file, sep= r',|\t',engine='python', header=4, names=kcolnames,index_col=None)
            kin = pd.concat([kin,tdf],  ignore_index=True)
    return kin

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages