Download the executable from this link then follow the instructions there to install Anaconda.
In an Anaconda terminal, run conda create -n "mousearm-test python=3.11 -y" or any environment name.
Activate the environment with conda activate mousearm-test.
Windows/Linux: conda install -c opensim-org opensim.
macOS (Apple Silicon): CONDA_SUBDIR=osx-64 conda install -c opensim-org opensim.
Windows: cd %USERPROFILE%\Documents.
Linux/macOS: cd ~/Documents.
Run the following in the Anaconda terminal:
# Using SSH:
git clone git@github.com:Al-Borno-Lab/mousearm.git
# OR using HTTPS:
git clone https://github.com/Al-Borno-Lab/mousearm.git
cd mousearm
pip install uv'
uv pip install -e .
To do this, run:
cd mousearm/Demo
python demo.py
Data/
├── reachset_1/
│ └── kinematics_1.csv
└── reachset_2/
└── kinematics_1.csv
Then, in a separate anaconda terminal, cd into the parent directory of the Data folder.
In a new python file in the same folder as the Data folder, enter:
from mousearm.simulate import run_simulation
run_simulation("Data", nReachSets=2) # Adjust nReachSets accordingly
Then, run it using python run from the parent directory of the Data folder.
Process the motion capture data through DeepLabCut. The output file will have more data than necessary, so delete everything except time, paw (x,y,z), wrist (x,y,z), shoulder (x,y,z), elbow (x,y,z). At the end, the csv file should look like the following:

After formatting, the data folder should be formatted like this:
RawData/
└── reachsets/
├── reachset_1/
│ └── kinematics_1.csv
├── reachset_2/
│ └── kinematics_1.csv
└── ...
The important output files are muscle_solution and the muscle_kinematics:
- muscle_solution shows the solution that the model found for the movement. These can be visualized in OpenSim to observe the movement and predicted muscle actuations.
- muscle_kinematics shows the difference between the captured movement and the movement predicted by the model
These files can both be imported into a pandas dataframe for further analysis with the below python code. The directory should be structured like this:
RawData/
└── reachsets/
├── reachset_1/
│ ├── muscle_solution_adjusted_kinematics_1.sto
│ └── muscle_kinematics_adjusted_kinematics_1.csv
├── reachset_2/
│ ├── muscle_solution_adjusted_kinematics_1.sto
│ └── muscle_kinematics_adjusted_kinematics_1.csv
└── ...
import pandas as pd
import glob
import numpy as np
base_dir = "../../RawData/reachsets/" # Adjust this path to yours
save_dir = "../../Data/" # Adjust this path to yours
mcolnames = ["time", "/jointset/shoulder/elv_angle/value", "/jointset/shoulder/extension_angle/value", "/jointset/shoulder/rotation_angle/value", "/jointset/humerus_ulna/elbow_flex/value", "/jointset/ulna_radius_pj/radius_rot/value", "/jointset/wrist/wrist_angle/value", "/jointset/shoulder/elv_angle/speed", "/jointset/shoulder/extension_angle/speed", "/jointset/shoulder/rotation_angle/speed", "/jointset/humerus_ulna/elbow_flex/speed", "/jointset/ulna_radius_pj/radius_rot/speed", "/jointset/wrist/wrist_angle/speed", "/forceset/Pectoralis_Clavicle_Head/activation", "/forceset/Biceps_Short_Head/activation", "/forceset/Biceps_Long_Head/activation", "/forceset/Deltoid_Medial/activation", "/forceset/Triceps_Lat_Head/activation", "/forceset/Triceps_Long_Head/activation", "/forceset/Brachialis_Proximal_Head/activation", "/forceset/Brachialis_Distal_Head/activation", "/forceset/Anconeus/activation", "/forceset/Deltoid_Posterior/activation", "/forceset/Anconeus_Short_Head/activation", "/forceset/Subscapularis_SuperiorHead/activation", "/forceset/Infraspinatus/activation", "/forceset/PronatorTeres/activation", "/forceset/FlexorCarpiRadialis/activation", "/forceset/Brachioradialis/activation", "/forceset/Triceps_Medial_Head/activation", "/forceset/Latissimus_Dorsi_Rostral/activation", "/forceset/Latissimus_Dorsi_Caudal/activation", "/forceset/Pectoralis_Major_Anterior/activation", "/forceset/Pectoralis_Major_Posterior/activation", "/forceset/Pectoralis_Clavicle_Head", "/forceset/Biceps_Short_Head", "/forceset/Biceps_Long_Head", "/forceset/Deltoid_Medial", "/forceset/Triceps_Lat_Head", "/forceset/Triceps_Long_Head", "/forceset/Brachialis_Proximal_Head", "/forceset/Brachialis_Distal_Head", "/forceset/Anconeus", "/forceset/Deltoid_Posterior", "/forceset/Anconeus_Short_Head", "/forceset/Subscapularis_SuperiorHead", "/forceset/Infraspinatus", "/forceset/PronatorTeres", "/forceset/FlexorCarpiRadialis", "/forceset/Brachioradialis", "/forceset/Triceps_Medial_Head", "/forceset/Latissimus_Dorsi_Rostral", "/forceset/Latissimus_Dorsi_Caudal", "/forceset/Pectoralis_Major_Anterior", "/forceset/Pectoralis_Major_Posterior"]
kcolnames = ["time","paw_x","paw_y","paw_z","elbow_x","elbow_y","elbow_z"]
def getMu(which_sets):
mu = pd.DataFrame();
for set in which_sets:
for file in glob.glob(base_dir+"reachset_"+str(set)+"/muscle_sol*"):
tdf = pd.read_csv(file, sep= r'\t',engine='python', header=18, names=mcolnames, index_col=None)
mu = pd.concat([mu,tdf], ignore_index=True)
return mu
def getKin(which_sets):
kin = pd.DataFrame();
for set in which_sets:
for file in glob.glob(base_dir+"reachset_"+str(set)+"/muscle_kinematics_*"):
tdf = pd.read_csv(file, sep= r',|\t',engine='python', header=4, names=kcolnames,index_col=None)
kin = pd.concat([kin,tdf], ignore_index=True)
return kin