Skip to content

Commit

Permalink
Make progress with ZetaInvBound calculations.
Browse files Browse the repository at this point in the history
  • Loading branch information
VladaSedlacek committed May 7, 2024
1 parent 98b956d commit 09e51ab
Showing 1 changed file with 15 additions and 24 deletions.
39 changes: 15 additions & 24 deletions PrimeNumberTheoremAnd/ZetaBounds.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1780,34 +1780,25 @@ lemma ZetaInvBnd :
· simp only [mul_assoc]
refine mul_le_mul C'le le_rfl ?_ (by positivity)
exact mul_nonneg (by positivity) (by linarith [hσ.2])
· save
apply sub_le_sub
· apply mul_le_mul ?_ ?_ (by positivity) ?_
· sorry
-- apply mul_le_mul_of_nonneg_left ?_ Cpos.le
-- apply Real.rpow_le_rpow_iff Apos.le (by linarith) (by norm_num) |>.mpr
-- simp only [σ', add_sub_cancel_left]
-- refine div_le_self Apos.le ?_
-- exact mod_cast Real.one_le_rpow (x := Real.log |t|) (z := 9) (by linarith) (by positivity)
· exact Real.rpow_le_rpow_left_iff logt_gt_one |>.mpr (by norm_num)
· positivity
· conv => rhs; rw [mul_div_assoc, mul_assoc]
apply mul_le_mul (by simp) ?_ ?_ (by positivity)
· simp only [σ', sub_le_iff_le_add, add_comm]
rw [two_mul, ← add_assoc]
apply le_trans (b := 1 + A / Real.log |t|)
· rw [add_le_add_iff_left]
exact div_le_div Apos.le (by rfl) (by positivity) <| ZetaInvBnd_aux logt_gt_one
· sorry
-- rw [add_le_add_iff_right]; linarith only [σ_ge]
· linarith [hσ.2, (by positivity : 0 ≤ A / Real.log |t| ^ 9)]
· save
have : Real.log |t| ^ (-(9 : ℝ) + 2) * C * 2 * A = C * 2 * A * Real.log |t| ^ (-(7 : ℝ)) :=
· apply sub_le_sub (by simp only [add_sub_cancel_left, σ']; exact_mod_cast le_rfl) ?_
rw [mul_div_assoc, mul_assoc _ 2 _]
apply mul_le_mul (by exact_mod_cast le_rfl) ?_ (by linarith [hσ.2]) (by positivity)
suffices h : σ' + (1 - A / Real.log |t| ^ 9) ≤ (1 + A / Real.log |t| ^ 9) + σ by
simp only [tsub_le_iff_right]
convert le_sub_right_of_add_le h using 1; ring_nf; norm_cast; simp
exact add_le_add (by linarith) (by linarith [hσ.1])
· have : Real.log |t| ^ (-(9 : ℝ) + 2) * C * 2 * A = C * 2 * A * Real.log |t| ^ (-(7 : ℝ)) :=
by ring_nf
conv => lhs; rhs; rw [div_eq_mul_inv, mul_comm, ← mul_assoc, ← mul_assoc, mul_comm C,
← mul_assoc, ← Real.rpow_neg (by positivity), ← Real.rpow_add (by positivity), this]
simp only [tsub_le_iff_right, sub_add_cancel]
sorry
rw [mul_assoc, mul_assoc, Real.div_rpow (by positivity) (by positivity), ← mul_div_right_comm]
apply mul_le_mul_left Cpos |>.mpr
conv => rhs; rw [div_eq_mul_inv, mul_assoc]
apply mul_le_mul_left (by positivity) |>.mpr
rw [← Real.rpow_neg (by positivity), ← Real.rpow_mul (by positivity),
← Real.rpow_add (by positivity)]
norm_num
· apply div_le_iff (by positivity) |>.mpr
conv => rw [mul_assoc]; rhs; rhs; rw [mul_comm C, ← mul_assoc, ← Real.rpow_add (by positivity)]
· norm_num
Expand Down

0 comments on commit 09e51ab

Please sign in to comment.