Skip to content

Commit

Permalink
typos
Browse files Browse the repository at this point in the history
  • Loading branch information
AlexKontorovich committed Jan 21, 2024
1 parent 23bae56 commit 13d919c
Show file tree
Hide file tree
Showing 3 changed files with 37 additions and 14 deletions.
23 changes: 20 additions & 3 deletions blueprint/Basic.tex
Original file line number Diff line number Diff line change
Expand Up @@ -25,21 +25,35 @@


MellinTransform

Mellin Inversion (Goldfeld-Kontorovich)

ChebyshevPsi

ZeroFreeRegion

Hadamard Factorization

Hoffstein-Lockhart + Goldfeld-Hoffstein-Liemann
9-12 and 2-5 every day
DirichletSeries (NatPos->C)

LSeries (NatPos->C)

RiemannZetaFunction

RectangleIntegral

ResidueTheoremOnRectangle

ArgumentPrincipleOnRectangle

Break rectangle into lots of little rectangles where f is holomorphic, and squares with center at a pole

HasPoleAt f z : TendsTo 1/f (N 0)

Equiv: TendsTo f atTop

Then locally f looks like (z-z_0)^N g

For all c sufficiently small, integral over big rectangle with finitely many poles is equal to rectangle integral localized at each pole.
Rectangles tile rectangles! (But not circles -> circles) No need for toy contours!

Expand All @@ -59,7 +73,10 @@

Main Theorem: The Prime Number Theorem
\begin{theorem}[PrimeNumberTheorem]
PNT
$$
ψ (x) = x + O(x e^{-c \sqrt{\log x}})
$$
as $x\to \infty$.
\end{theorem}


8 changes: 7 additions & 1 deletion blueprint/blueprint.tex
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,13 @@
\dochome{https://github.com/AlexKontorovich/PrimeNumberTheoremAnd/docs}

\title{Prime Number Theorem And ...}
\author{Mathlib}

\newcommand{\R}{\mathbb{R}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\N}{\mathbb{N}}


\begin{document}
\maketitle
Expand Down
20 changes: 10 additions & 10 deletions blueprint/wiener.tex
Original file line number Diff line number Diff line change
Expand Up @@ -22,13 +22,13 @@ \chapter{A Fourier-analytic proof of the Wiener-Ikehara theorem}
\end{proof}

\begin{lemma}[Second Fourier identity]\label{second-fourier} If $\psi: \R \to \C$ is continuous and compactly supported and $x > 0$, then for any $\sigma>1$
$$ \int_{-\log x}^infty e^{-u(sigma-1)} \hat psi(\frac{u}{2\pi})\ du = x^{sigma - 1} \int_\R \frac{1}{\sigma+it-1} \psi(t) x^{it}\ dt.$$
$$ \int_{-\log x}^\infty e^{-u(\sigma-1)} \hat \psi(\frac{u}{2\pi})\ du = x^{\sigma - 1} \int_\R \frac{1}{\sigma+it-1} \psi(t) x^{it}\ dt.$$
\end{lemma}

\begin{proof} The left-hand side expands as
$$ \int_{-\log x}^infty \int_\R e^{-u(sigma-1)} \psi(t) e(-\frac{tu}{2\pi})\ dt du = x^{sigma - 1} \int_\R \frac{1}{\sigma+it-1} \psi(t) x^{it}\ dt$$
$$ \int_{-\log x}^\infty \int_\R e^{-u(\sigma-1)} \psi(t) e(-\frac{tu}{2\pi})\ dt du = x^{\sigma - 1} \int_\R \frac{1}{\sigma+it-1} \psi(t) x^{it}\ dt$$
so by Fubini's theorem it suffices to verify the identity
$$ \int_{-\log x}^infty \int_\R e^{-u(sigma-1)} e(-\frac{tu}{2\pi})\ du = x^{sigma - 1} \frac{1}{\sigma+it-1} x^{it}$$
$$ \int_{-\log x}^\infty \int_\R e^{-u(\sigma-1)} e(-\frac{tu}{2\pi})\ du = x^{\sigma - 1} \frac{1}{\sigma+it-1} x^{it}$$
which is a routine calculation.
\end{proof}

Expand All @@ -49,16 +49,16 @@ \chapter{A Fourier-analytic proof of the Wiener-Ikehara theorem}
\end{proof}

\begin{lemma}[Limiting Fourier identity]\label{limiting} If $\psi: \R \to \C$ is $C^2$ and compactly supported and $x \geq 1$, then
$$ \sum_{n=1}^\infty \frac{f(n)}{n} \hat \psi( \frac{1}{2\pi} \log \frac{n}{x} ) - A \int_{-\log x}^infty \hat psi(\frac{u}{2\pi})\ du = \int_\R G(1+it) \psi(t) x^{it}\ dt.$$
$$ \sum_{n=1}^\infty \frac{f(n)}{n} \hat \psi( \frac{1}{2\pi} \log \frac{n}{x} ) - A \int_{-\log x}^\infty \hat \psi(\frac{u}{2\pi})\ du = \int_\R G(1+it) \psi(t) x^{it}\ dt.$$
\end{lemma}

\begin{proof} By the preceding two lemmas, we know that for any $\sigma>1$, we have
$$ \sum_{n=1}^\infty \frac{f(n)}{n^\sigma} \hat \psi( \frac{1}{2\pi} \log \frac{n}{x} ) - A x^{1-\sigma} \int_{-\log x}^infty e^{-u(\sigma-1)} \hat psi(\frac{u}{2\pi})\ du = \int_\R G(\sigma+it) \psi(t) x^{it}\ dt.$$
$$ \sum_{n=1}^\infty \frac{f(n)}{n^\sigma} \hat \psi( \frac{1}{2\pi} \log \frac{n}{x} ) - A x^{1-\sigma} \int_{-\log x}^\infty e^{-u(\sigma-1)} \hat \psi(\frac{u}{2\pi})\ du = \int_\R G(\sigma+it) \psi(t) x^{it}\ dt.$$
Now take limits as $\sigma \to 1$ using dominated convergence together with \eqref{cheby} and Lemma \ref{decay} to obtain the result.
\end{proof}

\begin{corollary}\label{limiting-cor} With the hypotheses as above, we have
$$ \sum_{n=1}^\infty \frac{f(n)}{n} \hat \psi( \frac{1}{2\pi} \log \frac{n}{x} ) = A \int_{-\infty}^\infty \hat psi(\frac{u}{2\pi})\ du + o(1)$$
$$ \sum_{n=1}^\infty \frac{f(n)}{n} \hat \psi( \frac{1}{2\pi} \log \frac{n}{x} ) = A \int_{-\infty}^\infty \hat \psi(\frac{u}{2\pi})\ du + o(1)$$
as $x \to \infty$.
\end{corollary}

Expand All @@ -74,9 +74,9 @@ \chapter{A Fourier-analytic proof of the Wiener-Ikehara theorem}
where the implied constants depend on $\psi$. By Lemma \ref{decay} we then have
$$ \hat \psi_{>R}(u) \ll R^{-1} / (1+|u|^2).$$
Using this and \eqref{cheby} one can show that
$$ \sum_{n=1}^\infty \frac{f(n)}{n} \hat \psi_{>R}( \frac{1}{2\pi} \log \frac{n}{x} ), A \int_{-\infty}^\infty \hat psi_{>R} (\frac{u}{2\pi})\ du \ll R^{-1} $$
(with implied constants also depending on $A$), while from Lemma \ref{limiting-cor} on ehas
$$ \sum_{n=1}^\infty \frac{f(n)}{n} \hat \psi_{\leq R}( \frac{1}{2\pi} \log \frac{n}{x} ) = A \int_{-\infty}^\infty \hat psi_{\leq R} (\frac{u}{2\pi})\ du + o(1).$$
$$ \sum_{n=1}^\infty \frac{f(n)}{n} \hat \psi_{>R}( \frac{1}{2\pi} \log \frac{n}{x} ), A \int_{-\infty}^\infty \hat \psi_{>R} (\frac{u}{2\pi})\ du \ll R^{-1} $$
(with implied constants also depending on $A$), while from Lemma \ref{limiting-cor} one has
$$ \sum_{n=1}^\infty \frac{f(n)}{n} \hat \psi_{\leq R}( \frac{1}{2\pi} \log \frac{n}{x} ) = A \int_{-\infty}^\infty \hat \psi_{\leq R} (\frac{u}{2\pi})\ du + o(1).$$
Combining the two estimates and letting $R$ be large, we obtain the claim.
\end{proof}

Expand All @@ -94,7 +94,7 @@ \chapter{A Fourier-analytic proof of the Wiener-Ikehara theorem}
\begin{proof} By Lemma \ref{bij}, we can write
$$ y \Psi(y) = \hat \psi( \frac{1}{2\pi} \log y )$$
for all $y>0$ and some Schwartz function $\psi$. Making this substitution, the claim is then equivalent after standard manipulations to
$$ \sum_{n=1}^\infty \frac{f(n)}{n} \hat \psi( \frac{1}{2\pi} \log \frac{n}{x} ) = A \int_{-\infty}^\infty \hat psi(\frac{u}{2\pi})\ du + o(1)$$
$$ \sum_{n=1}^\infty \frac{f(n)}{n} \hat \psi( \frac{1}{2\pi} \log \frac{n}{x} ) = A \int_{-\infty}^\infty \hat \psi(\frac{u}{2\pi})\ du + o(1)$$
and the claim follows from Lemma \ref{schwarz-id}.
\end{proof}

Expand Down

0 comments on commit 13d919c

Please sign in to comment.