Skip to content

Commit

Permalink
adding primed versions for 2 pi i factors
Browse files Browse the repository at this point in the history
  • Loading branch information
AlexKontorovich committed Feb 1, 2024
1 parent b08315c commit 5d5d1cd
Show file tree
Hide file tree
Showing 2 changed files with 9 additions and 6 deletions.
8 changes: 4 additions & 4 deletions PrimeNumberTheoremAnd/MellinCalculus.lean
Original file line number Diff line number Diff line change
Expand Up @@ -24,15 +24,15 @@ It is very convenient to define integrals along vertical lines in the complex pl
Let $f$ be a function from $\mathbb{C}$ to $\mathbb{C}$, and let $\sigma$ be a real number. Then we define
$$\int_{(\sigma)}f(s)ds = \int_{\sigma-i\infty}^{\sigma+i\infty}f(s)ds.$$
\end{definition}
[Note: Better to define $\int_{(\sigma)}$ as $\frac1{2\pi i}\int_{\sigma-i\infty}^{\sigma+i\infty}$??
There's a factor of $2\pi i$ in such contour integrals...]
Attempt on 2/1/24: yes, add $1/(2\pi i)$ to the definition of ``VerticalIntegral'' and ``RectangleIntegral'' (below).
We also have a version with a factor of $1/(2\pi i)$.
%%-/

noncomputable def VerticalIntegral (f : ℂ → ℂ) (σ : ℝ) : ℂ :=
(1 / (2 * π)) * ∫ t : ℝ, f (σ + t * I)
I • ∫ t : ℝ, f (σ + t * I)

noncomputable abbrev VerticalIntegral' (f : ℂ → ℂ) (σ : ℝ) : ℂ :=
(1 / (2 * π * I)) * ∫ t : ℝ, f (σ + t * I)

/-%%
The following is preparatory material used in the proof of the Perron formula, see Lemma \ref{PerronFormula}.
Expand Down
7 changes: 5 additions & 2 deletions PrimeNumberTheoremAnd/ResidueCalcOnRectangles.lean
Original file line number Diff line number Diff line change
Expand Up @@ -24,15 +24,18 @@ def Rectangle (z w : ℂ) : Set ℂ := [[z.re, w.re]] ×ℂ [[z.im, w.im]]
/-%%
\begin{definition}\label{RectangleIntegral}\lean{RectangleIntegral}\leanok
A RectangleIntegral of a function $f$ is one over a rectangle determined by $z$ and $w$ in $\C$.
We will sometimes denote it by $\int_{z}^{w} f$.
We will sometimes denote it by $\int_{z}^{w} f$. (There is also a primed version, which is $1/(2\pi i)$ times the original.)
\end{definition}
%%-/
/-- A `RectangleIntegral` of a function `f` is one over a rectangle determined by
`z` and `w` in `ℂ`. -/
noncomputable def RectangleIntegral (f : ℂ → ℂ) (z w : ℂ) : ℂ :=
(1/(2 * π * I)) * ((∫ x : ℝ in z.re..w.re, f (x + z.im * I)) - (∫ x : ℝ in z.re..w.re, f (x + w.im * I))
((∫ x : ℝ in z.re..w.re, f (x + z.im * I)) - (∫ x : ℝ in z.re..w.re, f (x + w.im * I))
+ I • (∫ y : ℝ in z.im..w.im, f (w.re + y * I)) - I • ∫ y : ℝ in z.im..w.im, f (z.re + y * I))

noncomputable abbrev RectangleIntegral' (f : ℂ → ℂ) (z w : ℂ) : ℂ :=
(1/(2 * π * I)) * RectangleIntegral f z w

/-- A function is `HolomorphicOn` a set if it is complex differentiable on that set. -/
abbrev HolomorphicOn (f : ℂ → ℂ) (s : Set ℂ) : Prop := DifferentiableOn ℂ f s

Expand Down

0 comments on commit 5d5d1cd

Please sign in to comment.