Skip to content

Commit

Permalink
aux lemmata
Browse files Browse the repository at this point in the history
  • Loading branch information
AlexKontorovich committed Jan 29, 2024
1 parent 0b21e79 commit 6425259
Showing 1 changed file with 85 additions and 27 deletions.
112 changes: 85 additions & 27 deletions PrimeNumberTheoremAnd/MellinCalculus.lean
Original file line number Diff line number Diff line change
Expand Up @@ -29,62 +29,95 @@ noncomputable def VerticalIntegral (f : ℂ → ℂ) (σ : ℝ) : ℂ :=
I • ∫ t : ℝ, f (σ + t * I)

/-%%
We first prove the following ``Perron-type'' formula.
\begin{lemma}\label{PerronFormula}
For $x>0$ and $\sigma>0$, we have
$$
\frac1{2\pi i}
\int_{(\sigma)}\frac{x^s}{s(s+1)}ds = \begin{cases}
1-\frac1x & \text{ if }x>1\\
0 & \text{ if } x<1
\end{cases}.
$$
\end{lemma}
We first prove the following ``Perron-type'' formula, see Lemma \ref{PerronFormula} below.
This requires some preparatory material.
%%-/

/-%%
\begin{lemma}\label{HolomorphicOn_of_Perron_function}\lean{HolomorphicOn_of_Perron_function}
Let $x>0$. Then the function $f(s) = x^s/(s(s+1))$ is holomorphic on the half-plane $\{s\in\mathbb{C}:\Re(s)>0\}$.
\end{lemma}
%%-/
lemma HolomorphicOn_of_Perron_function {x : ℝ} (xpos : 0 < x) :
HolomorphicOn (fun s => x ^ s / (s * (s + 1))) {s | 0 < s.re} := by
sorry

/-%%
\begin{lemma}\label{RectangleIntegral_eq_zero}\lean{RectangleIntegral_eq_zero}
\uses{RectangleIntegral}
Let $\sigma,\sigma',T>0$, and let $f$ be a holomorphic function on the half-plane $\{s\in\mathbb{C}:\Re(s)>0\}$. Then
the rectanglet integral
$$\int_{\sigma-iT}^{\sigma'+iT}f(s)ds = 0.$$
\end{lemma}
%%-/
lemma RectangleIntegral_eq_zero {σ σ' T : ℝ} (σ_pos : 0 < σ) (σ'_pos : 0 < σ') (T_pos : 0 < T)
{f : ℂ → ℂ} (fHolo : HolomorphicOn f {s | 0 < s.re}) :
RectangleIntegral f (σ - I * T) (σ' + I * T) = 0 := by
sorry -- apply HolomorphicOn.vanishesOnRectangle in PR #9598

/-%%
\begin{lemma}\label{RectangleIntegral_tendsTo_VerticalIntegral}\lean{RectangleIntegral_tendsTo_VerticalIntegral}
\uses{RectangleIntegral}
Let $\sigma,\sigma'>0$, and let $f$ be a holomorphic function on the half-plane $\{s\in\mathbb{C}:\Re(s)>0\}$. Then
the limit of rectangle integrals
$$\lim_{T\to\infty}\int_{\sigma-iT}^{\sigma'+iT}f(s)ds = \int_{(\sigma')}f(s)ds - \int_{(\sigma)}f(s)ds
.$$
*** Needs more conditions on $f$ ***
\end{lemma}
%%-/
lemma RectangleIntegral_tendsTo_VerticalIntegral {σ σ' : ℝ} (σ_pos : 0 < σ) (σ'_pos : 0 < σ')
{f : ℂ → ℂ} (fHolo : HolomorphicOn f {s | 0 < s.re}) :
-- needs more hypotheses
Tendsto (fun (T : ℝ) ↦ RectangleIntegral f (σ - I * T) (σ' + I * T)) atTop
(𝓝 (VerticalIntegral f σ' - VerticalIntegral f σ)) := by
sorry

/-%%
\begin{lemma}\label{PerronIntegralPosAux}\lean{PerronIntegralPosAux}
The integral
$$\int_\R\frac{1}{|(1+t)(1+t+1)|}dt$$
is positive (and hence convergent - since a divergent integral is zero in Lean, by definition).
\end{lemma}
%%-/
lemma PerronIntegralPosAux : 0 < ∫ (t : ℝ), 1 / |(1 + t) * (1 + t + 1)| := by

sorry

/-%%
\begin{lemma}\label{VertIntPerronBound}\lean{VertIntPerronBound}
\uses{VerticalIntegral}
Let $x>0$, $\sigma>1$, and $x<1$. Then
$$\left|
\int_{(\sigma)}\frac{x^s}{s(s+1)}ds\right| \leq x^\sigma \int_\R\frac{1}{|(1+t)(1+t+1)|}dt.$$
\end{lemma}
%%-/
lemma VertIntPerronBound {x : ℝ} (xpos : 0 < x) (x_le_one : x < 1) {σ : ℝ} (σ_gt_one : 1 < σ) :
Complex.abs (VerticalIntegral f σ') ≤ x ^ σ' * ∫ (t : ℝ), 1 / |(1 + t) * (1 + t + 1)| := by
Complex.abs (VerticalIntegral f σ) ≤ x ^ σ * ∫ (t : ℝ), 1 / |(1 + t) * (1 + t + 1)| := by
sorry


lemma limitOfConstant {a : ℝ → ℂ} (σ : ℝ) (ha : ∀ᶠ (σ' : ℝ) (σ'' : ℝ) in atTop, a σ' = a σ'')
(ha' : Tendsto (fun σ' => a σ') atTop (𝓝 0)) : a σ = 0 := by
/-%%
\begin{lemma}\label{limitOfConstant}\lean{limitOfConstant}
Let $a:\R\to\C$ be a function, and let $\sigma>0$ be a real number. Suppose that, for all
$\sigma, \sigma'>0$, we have $a(\sigma')=a(\sigma)$, and that
$\lim_{\sigma\to\infty}a(\sigma)=0$. Then $a(\sigma)=0$.
%%-/
lemma limitOfConstant {a : ℝ → ℂ} {σ : ℝ} (σpos : 0 < σ) (ha : ∀ (σ' : ℝ) (σ'' : ℝ) (σ'pos : 0 < σ')
(σ''pos : 0 < σ''), a σ' = a σ'') (ha' : Tendsto (fun σ' => a σ') atTop (𝓝 0)) : a σ = 0 := by
sorry
/-%%
We break this into the two cases, first proving the following.
\begin{lemma}\label{PerronFormulaLeOne}\lean{VerticalIntegral_Perron_le_one}
We are ready for the Perron formula, which breaks into two cases, the first being:
\begin{lemma}\label{PerronFormulaLtOne}\lean{VerticalIntegral_Perron_lt_one}
For $x>0$, $\sigma>0$, and $x<1$, we have
$$
\frac1{2\pi i}
\int_{(\sigma)}\frac{x^s}{s(s+1)}ds =0.
$$
\end{lemma}
%%-/
lemma VerticalIntegral_Perron_le_one {x : ℝ} (xpos : 0 < x) (x_le_one : x < 1)
lemma VerticalIntegral_Perron_lt_one {x : ℝ} (xpos : 0 < x) (x_lt_one : x < 1)
{σ : ℝ} (σ_pos : 0 < σ) : VerticalIntegral (fun s ↦ x^s / (s * (s + 1))) σ = 0 := by
/-%%
\begin{proof}
\uses{ResidueTheoremOnRectangle, RectangleIntegralEqSumOfRectangles, VerticalIntegral, MellinTransform}
\uses{HolomorphicOn_of_Perron_function, RectangleIntegral_eq_zero, PerronIntegralPosAux, VertIntPerronBound, limitOfConstant}
Let $f(s) = x^s/(s(s+1))$. Then $f$ is holomorphic on the half-plane $\{s\in\mathbb{C}:\Re(s)>0\}$.
%%-/
set f : ℂ → ℂ := (fun s ↦ x^s / (s * (s + 1)))
Expand All @@ -108,22 +141,47 @@ lemma VerticalIntegral_Perron_le_one {x : ℝ} (xpos : 0 < x) (x_le_one : x < 1)
--%% $C=\int_\R\frac{1}{|(1+t)(1+t+1)|}dt$.
have VertIntBound : ∃ C > 0, ∀ σ' > 1, Complex.abs (VerticalIntegral f σ') ≤ x^σ' * C
· let C := ∫ (t : ℝ), 1 / |(1 + t) * (1 + t + 1)|
exact ⟨C, PerronIntegralPosAux, fun σ' σ'_gt_one ↦ VertIntPerronBound xpos x_le_one σ'_gt_one⟩
exact ⟨C, PerronIntegralPosAux, fun σ' σ'_gt_one ↦ VertIntPerronBound xpos x_lt_one σ'_gt_one⟩
--%% Therefore $\int_{(\sigma')}\to 0$ as $\sigma'\to\infty$.
have VertIntTendsto : Tendsto (fun (σ' : ℝ) ↦ VerticalIntegral f σ') atTop (𝓝 0)
· have : ‖x‖ < 1 := sorry
have := tendsto_pow_atTop_nhds_0_of_norm_lt_1 this
sorry
--%% So pulling contours gives $\int_{(\sigma)}=0$.
refine limitOfConstant (a := fun σ' ↦ VerticalIntegral f σ') σ ?_ VertIntTendsto
filter_upwards [mem_atTop 1]
intro σ' σ'_ge_one
filter_upwards [mem_atTop 1]
intro σ'' σ''_ge_one
exact contourPull σ' σ'' (by linarith) (by linarith)
exact limitOfConstant (a := fun σ' ↦ VerticalIntegral f σ') σ_pos contourPull VertIntTendsto
--%%\end{proof}


/-%%
The second lemma is the case $x>1$.
\begin{lemma}\label{PerronFormulaGtOne}\lean{VerticalIntegral_Perron_gt_one}
For $x>1$ and $\sigma>0$, we have
$$
\frac1{2\pi i}
\int_{(\sigma)}\frac{x^s}{s(s+1)}ds =1-1/x.
$$
\end{lemma}
%%-/
lemma VerticalIntegral_Perron_gt_one {x : ℝ} (x_gt_one : 1 < x) {σ : ℝ} (σ_pos : 0 < σ) :
VerticalIntegral (fun s ↦ x^s / (s * (s + 1))) σ = 1 - 1 / x := by
sorry


/-%%
The two together give the Perron formula.
\begin{lemma}\label{PerronFormula}
\uses{PerronFormulaLtOne, PerronFormulaGtOne}
For $x>0$ and $\sigma>0$, we have
$$
\frac1{2\pi i}
\int_{(\sigma)}\frac{x^s}{s(s+1)}ds = \begin{cases}
1-\frac1x & \text{ if }x>1\\
0 & \text{ if } x<1
\end{cases}.
$$
\end{lemma}
%%-/

/-%%
\begin{theorem}\label{MellinInversion}
Let $f$ be a nice function from $\mathbb{R}_{>0}$ to $\mathbb{C}$, and let $\sigma$ be sufficiently large. Then
Expand Down

0 comments on commit 6425259

Please sign in to comment.