Skip to content

Commit

Permalink
ZetaBnd_aux1b fix
Browse files Browse the repository at this point in the history
  • Loading branch information
AlexKontorovich committed Apr 30, 2024
1 parent 0977ccb commit 7bf3e44
Showing 1 changed file with 3 additions and 4 deletions.
7 changes: 3 additions & 4 deletions PrimeNumberTheoremAnd/ZetaBounds.lean
Original file line number Diff line number Diff line change
Expand Up @@ -733,14 +733,13 @@ with an absolute implied constant.
\end{lemma}
%%-/
open MeasureTheory in
lemma ZetaBnd_aux1b (N : ℕ) (Npos : 1 ≤ N) {σ : ℝ} (σpos : 0 < σ) {t : ℝ} (ht : ct_aux1 < |t|) :
lemma ZetaBnd_aux1b (N : ℕ) (Npos : 1 ≤ N) {σ : ℝ} (σpos : 0 < σ) {t : ℝ} :
‖∫ x in Ioi (N : ℝ), (⌊x⌋ + 1 / 2 - x) / (x : ℂ) ^ ((σ + t * I) + 1)‖
≤ C_aux1' * N ^ (-σ) / σ := by
have' lim1 := intervalIntegral_tendsto_integral_Ioi
(f := fun (x : ℝ) ↦ (⌊x⌋ + 1 / 2 - x) / (x : ℂ) ^ ((σ + t * I) + 1))
(a := N) (b := fun x ↦ (x : ℝ))
(l := atTop) (μ := volume) ?_ ?_ |>.norm
-- (fun x ↦ (x : ℝ)) N atTop tendsto_coe_atTop
convert le_of_tendsto lim1 (b := C_aux1' * N ^ (-σ) / σ) ?_ using 1
· filter_upwards [Filter.mem_atTop (N + 1 : ℝ)]
intro b hb
Expand All @@ -764,9 +763,9 @@ lemma ZetaBnd_aux1b (N : ℕ) (Npos : 1 ≤ N) {σ : ℝ} (σpos : 0 < σ) {t :
convert this.congr_fun ?_ (by simp)
intro x hx
simp only [mem_Ioi] at hx
have xpos : 0 < x := by linarith
simp only
rw [div_eq_mul_inv (b := (x : ℂ) ^ (σ + t * I + 1)), Complex.cpow_neg]
· exact fun ⦃U⦄ a ↦ a
/-%%
\begin{proof}\uses{ZetaSum_aux1a}
Apply Lemma \ref{ZetaSum_aux1a} with $a=N$ and $b\to \infty$.
Expand Down Expand Up @@ -798,7 +797,7 @@ lemma ZetaBnd_aux1 {N : ℕ} (Npos : 1 ≤ N) {σ : ℝ} (hσ : σ ∈ Ioc 0 2)
calc _ ≤ ‖(σ : ℂ)‖ + ‖t * I‖ := norm_add_le ..
_ = |σ| + |t| := by simp
_ ≤ _ := by linarith [abs_of_pos hσ.1]
· exact ZetaBnd_aux1b N Npos hσ.1 ht
· exact ZetaBnd_aux1b N Npos hσ.1
/-%%
\begin{proof}\uses{ZetaSum_aux1b}\leanok
Apply Lemma \ref{ZetaSum_aux1b} and estimate $|s|\ll |t|$.
Expand Down

0 comments on commit 7bf3e44

Please sign in to comment.