Skip to content

Commit

Permalink
Merge pull request #19 from llllvvuu/feat/limit_of_constant
Browse files Browse the repository at this point in the history
feat: `limitOfConstant`
  • Loading branch information
AlexKontorovich authored Feb 1, 2024
2 parents 67d18f0 + f989c7b commit 94d8227
Showing 1 changed file with 9 additions and 9 deletions.
18 changes: 9 additions & 9 deletions PrimeNumberTheoremAnd/MellinCalculus.lean
Original file line number Diff line number Diff line change
Expand Up @@ -153,17 +153,17 @@ $\sigma, \sigma'>0$, we have $a(\sigma')=a(\sigma)$, and that
$\lim_{\sigma\to\infty}a(\sigma)=0$. Then $a(\sigma)=0$.
\end{lemma}
%%-/
lemma limitOfConstant {a : ℝ → ℂ} {σ : ℝ} (σpos : 0 < σ) (ha : ∀ (σ' : ℝ) (σ'' : ℝ) (σ'pos : 0 < σ')
(σ''pos : 0 < σ''), a σ' = a σ'') (ha' : Tendsto (fun σ' => a σ') atTop (𝓝 0)) : a σ = 0 := by
sorry
lemma limitOfConstant {a : ℝ → ℂ} {σ : ℝ} (σpos : 0 < σ)
(ha : ∀ (σ' : ℝ) (σ'' : ℝ) (_ : 0 < σ') (_ : 0 < σ''), a σ' = a σ'')
(ha' : Tendsto a atTop (𝓝 0)) : a σ = 0 := by
/-%%
\begin{proof}
To show that $a(\sigma)=0$, we show that $a(\sigma)< \epsilon$ for all $\epsilon>0$. Let $\epsilon>0$.
The fact that $\lim_{\sigma\to\infty}a(\sigma)=0$ means that there exists $\sigma_0>0$ such that
$|a(\sigma)|<\epsilon$ for all $\sigma>\sigma_0$. Now let $\sigma>0$. Then $a(\sigma)=a(\sigma_0)$, and
so $|a(\sigma)|=|a(\sigma_0)|<\epsilon$, as required.
\end{proof}
\begin{proof}\leanok\begin{align*}
\lim_{\sigma'\to\infty}a(\sigma) &= \lim_{\sigma'\to\infty}a(\sigma') \\
%%-/
have := eventuallyEq_of_mem (mem_atTop σ) fun σ' h ↦ ha σ' σ (σpos.trans_le h) σpos
--%% &= 0
exact tendsto_const_nhds_iff.mp (ha'.congr' this)
--%%\end{align*}\end{proof}

/-%%
\begin{lemma}\label{tendsto_Realpow_atTop_nhds_0_of_norm_lt_1}\lean{tendsto_Realpow_atTop_nhds_0_of_norm_lt_1}\leanok
Expand Down

0 comments on commit 94d8227

Please sign in to comment.