Skip to content

Commit

Permalink
Merge pull request #204 from Ruben-VandeVelde/WeakPNT_character
Browse files Browse the repository at this point in the history
Prove WeakPNT_character' using WeakPNT_character from EulerProducts
  • Loading branch information
AlexKontorovich authored Nov 8, 2024
2 parents 3c0b979 + c663168 commit a2063be
Showing 1 changed file with 21 additions and 1 deletion.
22 changes: 21 additions & 1 deletion PrimeNumberTheoremAnd/Wiener.lean
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@ import Mathlib.Algebra.GroupWithZero.Units.Basic
import Mathlib.Analysis.Distribution.FourierSchwartz
import Mathlib.Topology.UniformSpace.UniformConvergence
import Mathlib.MeasureTheory.Measure.Haar.Disintegration
import Mathlib.NumberTheory.MulChar.Lemmas

import PrimeNumberTheoremAnd.Fourier
import PrimeNumberTheoremAnd.BrunTitchmarsh
Expand Down Expand Up @@ -2320,7 +2321,26 @@ $$
\end{lemma}
%%-/

proof_wanted WeakPNT_character' {q:ℕ} {a:ℕ} (hq: q ≥ 1) (ha: Nat.Coprime a q) (ha': a < q) {s:ℂ} (hs: 1 < s.re): LSeries (fun n ↦ if n % q = a then Λ n else 0) s = - (∑' χ : DirichletCharacter ℂ q, ((starRingEnd ℂ) (χ a) * ((deriv (LSeries (fun n:ℕ ↦ χ n)) s)) / (LSeries (fun n:ℕ ↦ χ n) s))) / (Nat.totient q : ℂ)
theorem WeakPNT_character'
{q a : ℕ} (hq: q ≥ 1) (ha : Nat.Coprime a q) (ha' : a < q) {s : ℂ} (hs: 1 < s.re) :
LSeries (fun n ↦ if n % q = a then Λ n else 0) s =
- (∑' χ : DirichletCharacter ℂ q,
((starRingEnd ℂ) (χ a) * ((deriv (LSeries (fun n:ℕ ↦ χ n)) s)) / (LSeries (fun n:ℕ ↦ χ n) s))) /
(Nat.totient q : ℂ) := by
have : NeZero q := ⟨by omega⟩
convert WeakPNT_character ((ZMod.isUnit_iff_coprime a q).mpr ha) hs using 1
· congr with n
have : n % q = a ↔ (n : ZMod q) = a := by
rw [ZMod.natCast_eq_natCast_iff', Nat.mod_eq_of_lt ha']
simp [this]
split_ifs <;> simp [*]
· rw [div_eq_inv_mul, neg_mul_comm, tsum_fintype]
congr 3 with χ
rw [DirichletCharacter.deriv_LFunction_eq_deriv_LSeries _ hs,
DirichletCharacter.LFunction_eq_LSeries _ hs, mul_div]
congr 2
rw [starRingEnd_apply, MulChar.star_apply', MulChar.inv_apply_eq_inv',
← ZMod.coe_unitOfCoprime a ha, ZMod.inv_coe_unit, map_units_inv]

/-%%
\begin{proof} From the Fourier inversion formula on the multiplicative group $(\Z/q\Z)^\times$, we have
Expand Down

0 comments on commit a2063be

Please sign in to comment.