Skip to content

Commit

Permalink
Wiener uses
Browse files Browse the repository at this point in the history
  • Loading branch information
AlexKontorovich committed Jan 23, 2024
1 parent 1ed9687 commit a4d6b1d
Show file tree
Hide file tree
Showing 4 changed files with 173 additions and 9 deletions.
137 changes: 137 additions & 0 deletions PrimeNumberTheoremAnd/Wiener.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,137 @@
/-%%
The Fourier transform of an absolutely integrable function $\psi: \R \to \C$ is defined by the formula
$$ \hat \psi(u) := \int_\R e(-tu) \psi(t)\ dt$$
where $e(\theta) := e^{2\pi i \theta}$.
Let $f: \N \to \C$ be an arithmetic function such that $\sum_{n=1}^\infty \frac{|f(n)|}{n^\sigma} < \infty$ for all $\sigma>1$. Then the Dirichlet series
$$ F(s) := \sum_{n=1}^\infty \frac{f(n)}{n^s}$$
is absolutely convergent for $\sigma>1$.
\begin{lemma}[First Fourier identity]\label{first-fourier} If $\psi: \R \to \C$ is continuous and compactly supported and $x > 0$, then for any $\sigma>1$
$$ \sum_{n=1}^\infty \frac{f(n)}{n^\sigma} \hat \psi( \frac{1}{2\pi} \log \frac{n}{x} ) = \int_\R F(\sigma + it) \psi(t) x^{it}\ dt.$$
\end{lemma}
\begin{proof} By the definition of the Fourier transform, the left-hand side expands as
$$ \sum_{n=1}^\infty \int_\R \frac{f(n)}{n^\sigma} \psi(t) e( - \frac{1}{2\pi} t \log \frac{n}{x})\ dt$$
while the right-hand side expands as
$$ \int_\R \sum_{n=1}^\infty \frac{f(n)}{n^{\sigma+it}} \psi(t) x^{it}\ dt.$$
Since
$$\frac{f(n)}{n^\sigma} \psi(t) e( - \frac{1}{2\pi} t \log \frac{n}{x}) = \frac{f(n)}{n^{\sigma+it}} \psi(t) x^{it}$$
the claim then follows from Fubini's theorem.
\end{proof}
\begin{lemma}[Second Fourier identity]\label{second-fourier} If $\psi: \R \to \C$ is continuous and compactly supported and $x > 0$, then for any $\sigma>1$
$$ \int_{-\log x}^\infty e^{-u(\sigma-1)} \hat \psi(\frac{u}{2\pi})\ du = x^{\sigma - 1} \int_\R \frac{1}{\sigma+it-1} \psi(t) x^{it}\ dt.$$
\end{lemma}
\begin{proof}
\uses{first-fourier}
The left-hand side expands as
$$ \int_{-\log x}^\infty \int_\R e^{-u(\sigma-1)} \psi(t) e(-\frac{tu}{2\pi})\ dt du = x^{\sigma - 1} \int_\R \frac{1}{\sigma+it-1} \psi(t) x^{it}\ dt$$
so by Fubini's theorem it suffices to verify the identity
$$ \int_{-\log x}^\infty \int_\R e^{-u(\sigma-1)} e(-\frac{tu}{2\pi})\ du = x^{\sigma - 1} \frac{1}{\sigma+it-1} x^{it}$$
which is a routine calculation.
\end{proof}
Now let $A \in \C$, and suppose that there is a continuous function $G(s)$ defined on $\mathrm{Re} s \geq 1$ such that $G(s) = F(s) - \frac{A}{s-1}$ whenever $\mathrm{Re} s > 1$. We also make the Chebyshev-type hypothesis
\begin{equation}\label{cheby}
\sum_{n \leq x} |f(n)| \ll x
\end{equation}
for all $x \geq 1$ (this hypothesis is not strictly necessary, but simplifies the arguments and can be obtained fairly easily in applications).
\begin{lemma}[Decay bounds]\label{decay} If $\psi:\R \to \C$ is $C^2$ and obeys the bounds
$$ |\psi(t)|, |\psi''(t)| \leq A / (1 + |t|^2)$$
for all $t \in \R$, then
$$ |\hat \psi(u)| \leq C A / (1+|u|^2)$$
for all $u \in \R$, where $C$ is an absolute constant.
\end{lemma}
\begin{proof} This follows from a standard integration by parts argument.
\end{proof}
\begin{lemma}[Limiting Fourier identity]\label{limiting} If $\psi: \R \to \C$ is $C^2$ and compactly supported and $x \geq 1$, then
$$ \sum_{n=1}^\infty \frac{f(n)}{n} \hat \psi( \frac{1}{2\pi} \log \frac{n}{x} ) - A \int_{-\log x}^\infty \hat \psi(\frac{u}{2\pi})\ du = \int_\R G(1+it) \psi(t) x^{it}\ dt.$$
\end{lemma}
\begin{proof}
\uses{first-fourier,second-fourier,decay}
By the preceding two lemmas, we know that for any $\sigma>1$, we have
$$ \sum_{n=1}^\infty \frac{f(n)}{n^\sigma} \hat \psi( \frac{1}{2\pi} \log \frac{n}{x} ) - A x^{1-\sigma} \int_{-\log x}^\infty e^{-u(\sigma-1)} \hat \psi(\frac{u}{2\pi})\ du = \int_\R G(\sigma+it) \psi(t) x^{it}\ dt.$$
Now take limits as $\sigma \to 1$ using dominated convergence together with \eqref{cheby} and Lemma \ref{decay} to obtain the result.
\end{proof}
\begin{corollary}\label{limiting-cor} With the hypotheses as above, we have
$$ \sum_{n=1}^\infty \frac{f(n)}{n} \hat \psi( \frac{1}{2\pi} \log \frac{n}{x} ) = A \int_{-\infty}^\infty \hat \psi(\frac{u}{2\pi})\ du + o(1)$$
as $x \to \infty$.
\end{corollary}
\begin{proof}
\uses{limiting}
Immediate from the Riemann-Lebesgue lemma, and also noting that $\int_{-\infty}^{-\log x} \hat \psi(\frac{u}{2\pi})\ du = o(1)$.
\end{proof}
\begin{lemma}\label{schwarz-id} The previous corollary also holds for functions $\psi$ that are assumed to be in the Schwartz class, as opposed to being $C^2$ and compactly supported.
\end{lemma}
\begin{proof}
\uses{limiting-cor}
For any $R>1$, one can use a smooth cutoff function to write $\psi = \psi_{\leq R} + \psi_{>R}$, where $\psi_{\leq R}$ is $C^2$ (in fact smooth) and compactly supported (on $[-R,R]$), and $\psi_{>R}$ obeys bounds of the form
$$ |\psi_{>R}(t)|, |\psi''_{>R}(t)| \ll R^{-1} / (1 + |t|^2) $$
where the implied constants depend on $\psi$. By Lemma \ref{decay} we then have
$$ \hat \psi_{>R}(u) \ll R^{-1} / (1+|u|^2).$$
Using this and \eqref{cheby} one can show that
$$ \sum_{n=1}^\infty \frac{f(n)}{n} \hat \psi_{>R}( \frac{1}{2\pi} \log \frac{n}{x} ), A \int_{-\infty}^\infty \hat \psi_{>R} (\frac{u}{2\pi})\ du \ll R^{-1} $$
(with implied constants also depending on $A$), while from Lemma \ref{limiting-cor} one has
$$ \sum_{n=1}^\infty \frac{f(n)}{n} \hat \psi_{\leq R}( \frac{1}{2\pi} \log \frac{n}{x} ) = A \int_{-\infty}^\infty \hat \psi_{\leq R} (\frac{u}{2\pi})\ du + o(1).$$
Combining the two estimates and letting $R$ be large, we obtain the claim.
\end{proof}
\begin{lemma}\label{bij} The Fourier transform is a bijection on the Schwartz class.
\end{lemma}
\begin{proof} This is a standard result in Fourier analysis.
\end{proof}
\begin{corollary} If $\Psi: (0,\infty) \to \C$ is smooth and compactly supported away from the origin, then, then
$$ \sum_{n=1}^\infty f(n) \Psi( \frac{n}{x} ) = A x \int_0^\infty \Psi(y)\ dy + o(x)$$
as $u \to \infty$.
\end{corollary}
\begin{proof}
\uses{bij,schwarz-id}
By Lemma \ref{bij}, we can write
$$ y \Psi(y) = \hat \psi( \frac{1}{2\pi} \log y )$$
for all $y>0$ and some Schwartz function $\psi$. Making this substitution, the claim is then equivalent after standard manipulations to
$$ \sum_{n=1}^\infty \frac{f(n)}{n} \hat \psi( \frac{1}{2\pi} \log \frac{n}{x} ) = A \int_{-\infty}^\infty \hat \psi(\frac{u}{2\pi})\ du + o(1)$$
and the claim follows from Lemma \ref{schwarz-id}.
\end{proof}
\begin{lemma}[Smooth Urysohn lemma]\label{smooth-ury} If $I$ is a closed interval contained in an open interval $J$, then there exists a smooth function $\Psi: \R \to \R$ with $1_I \leq \Psi \leq 1_J$.
\end{lemma}
\begin{proof} A standard analysis lemma, which can be proven by convolving $1_K$ with a smooth approximation to the identity for some interval $K$ between $I$ and $J$.
\end{proof}
Now we add the hypothesis that $f(n) \geq 0$ for all $n$.
\begin{proposition}
\label{prop:smooth-ury}
For any closed interval $I \subset (0,+\infty)$, we have
$$ \sum_{n=1}^\infty f(n) 1_I( \frac{n}{x} ) = A x |I| + o(x).$$
\end{proposition}
\begin{proof}
\uses{smooth-ury}
Use Lemma \ref{smooth-ury} to bound $1_I$ above and below by smooth compactly supported functions whose integral is close to the measure of $|I|$, and use the non-negativity of $f$.
\end{proof}
\begin{corollary} We have
$$ \sum_{n\leq x} f(n) = A x |I| + o(x).$$
\end{corollary}
\begin{proof}
\uses{prop:smooth-ury}
Apply the preceding proposition with $I = [\varepsilon,1]$ and then send $\varepsilon$ to zero (using \eqref{cheby} to control the error).
\end{proof}
%%-/
11 changes: 10 additions & 1 deletion blueprint/ResidueCalcOnRectangles.tex
Original file line number Diff line number Diff line change
Expand Up @@ -21,8 +21,10 @@



A function is Meromorphic on a rectangle with corners $z$ and $w$ if it is holomorphic off a
\begin{definition}\label{MeromorphicOnRectangle}\lean{MeromorphicOnRectangle}\leanok
A function $f$ is Meromorphic on a rectangle with corners $z$ and $w$ if it is holomorphic off a
(finite) set of poles, none of which are on the boundary of the rectangle.
\end{definition}



Expand All @@ -33,6 +35,13 @@



\begin{proof}
\uses{MeromorphicOnRectangle, RectangleIntegral}
Rectangles tile rectangles, zoom in.
\end{proof}



A meromorphic function has a pole of finite order.
\begin{definition}\label{PoleOrder}
If $f$ has a pole at $z_0$, then there is an integer $n$ such that
Expand Down
4 changes: 3 additions & 1 deletion blueprint/blueprint.tex
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@

\chapter{The project}

The project github page is \url{https://github.com/AlexKontorovich/PrimeNumberTheoremAnd}.

The first main goal is to prove the Prime Number Theorem. Continuations of this project aim to extend
this work to primes in progressions (Dirichlet's theorem), Chebytarev's density theorem, etc
Expand All @@ -41,7 +42,8 @@ \chapter{The project}

\chapter{First approach: Wiener-Ikehara Tauberian theorem.}

\input{wiener.tex}
\section{A Fourier-analytic proof of the Wiener-Ikehara theorem}
\input{Wiener.tex}

\chapter{Second approach}

Expand Down
30 changes: 23 additions & 7 deletions blueprint/wiener.tex
Original file line number Diff line number Diff line change
@@ -1,4 +1,3 @@
\section{A Fourier-analytic proof of the Wiener-Ikehara theorem}

The Fourier transform of an absolutely integrable function $\psi: \R \to \C$ is defined by the formula
$$ \hat \psi(u) := \int_\R e(-tu) \psi(t)\ dt$$
Expand All @@ -25,7 +24,9 @@ \section{A Fourier-analytic proof of the Wiener-Ikehara theorem}
$$ \int_{-\log x}^\infty e^{-u(\sigma-1)} \hat \psi(\frac{u}{2\pi})\ du = x^{\sigma - 1} \int_\R \frac{1}{\sigma+it-1} \psi(t) x^{it}\ dt.$$
\end{lemma}

\begin{proof} The left-hand side expands as
\begin{proof}
\uses{first-fourier}
The left-hand side expands as
$$ \int_{-\log x}^\infty \int_\R e^{-u(\sigma-1)} \psi(t) e(-\frac{tu}{2\pi})\ dt du = x^{\sigma - 1} \int_\R \frac{1}{\sigma+it-1} \psi(t) x^{it}\ dt$$
so by Fubini's theorem it suffices to verify the identity
$$ \int_{-\log x}^\infty \int_\R e^{-u(\sigma-1)} e(-\frac{tu}{2\pi})\ du = x^{\sigma - 1} \frac{1}{\sigma+it-1} x^{it}$$
Expand All @@ -52,7 +53,9 @@ \section{A Fourier-analytic proof of the Wiener-Ikehara theorem}
$$ \sum_{n=1}^\infty \frac{f(n)}{n} \hat \psi( \frac{1}{2\pi} \log \frac{n}{x} ) - A \int_{-\log x}^\infty \hat \psi(\frac{u}{2\pi})\ du = \int_\R G(1+it) \psi(t) x^{it}\ dt.$$
\end{lemma}

\begin{proof} By the preceding two lemmas, we know that for any $\sigma>1$, we have
\begin{proof}
\uses{first-fourier,second-fourier,decay}
By the preceding two lemmas, we know that for any $\sigma>1$, we have
$$ \sum_{n=1}^\infty \frac{f(n)}{n^\sigma} \hat \psi( \frac{1}{2\pi} \log \frac{n}{x} ) - A x^{1-\sigma} \int_{-\log x}^\infty e^{-u(\sigma-1)} \hat \psi(\frac{u}{2\pi})\ du = \int_\R G(\sigma+it) \psi(t) x^{it}\ dt.$$
Now take limits as $\sigma \to 1$ using dominated convergence together with \eqref{cheby} and Lemma \ref{decay} to obtain the result.
\end{proof}
Expand All @@ -62,13 +65,16 @@ \section{A Fourier-analytic proof of the Wiener-Ikehara theorem}
as $x \to \infty$.
\end{corollary}

\begin{proof} Immediate from the Riemann-Lebesgue lemma, and also noting that $\int_{-\infty}^{-\log x} \hat \psi(\frac{u}{2\pi})\ du = o(1)$.
\begin{proof}
\uses{limiting}
Immediate from the Riemann-Lebesgue lemma, and also noting that $\int_{-\infty}^{-\log x} \hat \psi(\frac{u}{2\pi})\ du = o(1)$.
\end{proof}

\begin{lemma}\label{schwarz-id} The previous corollary also holds for functions $\psi$ that are assumed to be in the Schwartz class, as opposed to being $C^2$ and compactly supported.
\end{lemma}

\begin{proof}
\uses{limiting-cor}
For any $R>1$, one can use a smooth cutoff function to write $\psi = \psi_{\leq R} + \psi_{>R}$, where $\psi_{\leq R}$ is $C^2$ (in fact smooth) and compactly supported (on $[-R,R]$), and $\psi_{>R}$ obeys bounds of the form
$$ |\psi_{>R}(t)|, |\psi''_{>R}(t)| \ll R^{-1} / (1 + |t|^2) $$
where the implied constants depend on $\psi$. By Lemma \ref{decay} we then have
Expand All @@ -91,7 +97,9 @@ \section{A Fourier-analytic proof of the Wiener-Ikehara theorem}
as $u \to \infty$.
\end{corollary}

\begin{proof} By Lemma \ref{bij}, we can write
\begin{proof}
\uses{bij,schwarz-id}
By Lemma \ref{bij}, we can write
$$ y \Psi(y) = \hat \psi( \frac{1}{2\pi} \log y )$$
for all $y>0$ and some Schwartz function $\psi$. Making this substitution, the claim is then equivalent after standard manipulations to
$$ \sum_{n=1}^\infty \frac{f(n)}{n} \hat \psi( \frac{1}{2\pi} \log \frac{n}{x} ) = A \int_{-\infty}^\infty \hat \psi(\frac{u}{2\pi})\ du + o(1)$$
Expand All @@ -106,17 +114,25 @@ \section{A Fourier-analytic proof of the Wiener-Ikehara theorem}

Now we add the hypothesis that $f(n) \geq 0$ for all $n$.

\begin{proposition} For any closed interval $I \subset (0,+\infty)$, we have
\begin{proposition}
\label{prop:smooth-ury}
For any closed interval $I \subset (0,+\infty)$, we have
$$ \sum_{n=1}^\infty f(n) 1_I( \frac{n}{x} ) = A x |I| + o(x).$$
\end{proposition}

\begin{proof} Use Lemma \ref{smooth-ury} to bound $1_I$ above and below by smooth compactly supported functions whose integral is close to the measure of $|I|$, and use the non-negativity of $f$.
\begin{proof}
\uses{smooth-ury}
Use Lemma \ref{smooth-ury} to bound $1_I$ above and below by smooth compactly supported functions whose integral is close to the measure of $|I|$, and use the non-negativity of $f$.
\end{proof}

\begin{corollary} We have
$$ \sum_{n\leq x} f(n) = A x |I| + o(x).$$
\end{corollary}

\begin{proof}
\uses{prop:smooth-ury}
Apply the preceding proposition with $I = [\varepsilon,1]$ and then send $\varepsilon$ to zero (using \eqref{cheby} to control the error).
\end{proof}



0 comments on commit a4d6b1d

Please sign in to comment.