Skip to content

Commit

Permalink
hasDerivAt_Zeta0Integral work
Browse files Browse the repository at this point in the history
  • Loading branch information
AlexKontorovich committed May 3, 2024
1 parent ca76287 commit c2ab573
Showing 1 changed file with 40 additions and 2 deletions.
42 changes: 40 additions & 2 deletions PrimeNumberTheoremAnd/ZetaBounds.lean
Original file line number Diff line number Diff line change
Expand Up @@ -787,6 +787,43 @@ lemma isOpen_aux : IsOpen {z : ℂ | z ≠ 1 ∧ 0 < z.re} := by
refine IsOpen.inter isOpen_ne ?_
exact isOpen_lt (g := fun (z : ℂ) ↦ z.re) (by continuity) (by continuity)

open MeasureTheory in
lemma hasDerivAt_Zeta0Integral {N : ℕ} (N_pos : 0 < N) {s : ℂ} (hs : s ∈ {s | 0 < s.re}) :
HasDerivAt (fun z ↦ ∫ x in Ioi (N : ℝ), (⌊x⌋ + 1 / 2 - x) / (x : ℂ) ^ (z + 1))
(∫ x in Ioi (N : ℝ), (⌊x⌋ + 1 / 2 - x) * (x : ℂ) ^ (- s - 1) * (- Real.log x)) s := by
simp only [mem_setOf_eq] at hs
set f : ℝ → ℂ := fun x ↦ (⌊x⌋ : ℂ) + 1 / 2 - x -- with f_def
--simp_rw [← f_def]
set F : ℂ → ℝ → ℂ := fun s x ↦ (x : ℂ) ^ (- s - 1) * f x -- with F_def
set F' : ℂ → ℝ → ℂ := fun s x ↦ (x : ℂ) ^ (- s - 1) * (- Real.log x) * f x -- with F'_def
set ε := s.re / 2 -- with ε_def
have ε_pos : 0 < ε := by aesop
set bound : ℝ → ℝ := sorry -- fun x ↦ sorry
let μ : Measure ℝ := volume.restrict (Ioi (N : ℝ))
have hF_meas : ∀ᶠ (x : ℂ) in 𝓝 s, AEStronglyMeasurable (F x) μ := by
sorry
have hF_int : Integrable (F s) μ := by
sorry
have hF'_meas : AEStronglyMeasurable (F' s) μ := by
sorry
have h_bound : ∀ᵐ x ∂μ, ∀ z ∈ Metric.ball s ε, ‖F' z x‖ ≤ bound x := by
sorry
have bound_integrable : Integrable bound μ := by
sorry
have h_diff : ∀ᵐ x ∂μ, ∀ z ∈ Metric.ball s ε,
HasDerivAt (fun w ↦ F w x) (F' z x) z := by
sorry
convert (hasDerivAt_integral_of_dominated_loc_of_deriv_le (x₀ := s) (F := F) (F' := F') (ε := ε)
(ε_pos := ε_pos) (μ := μ) (bound := bound) (hF_meas := hF_meas) (hF_int := hF_int)
(hF'_meas := hF'_meas) (h_bound := h_bound) (bound_integrable := bound_integrable) (h_diff := h_diff)).2 using 3
· ext a
simp only [one_div, F, f, div_cpow_eq_cpow_neg]
ring_nf
· simp only [one_div, mul_neg, neg_mul, neg_inj, F', f, div_cpow_eq_cpow_neg]
ring_nf

#exit

/-%%
\begin{lemma}[HolomorphicOn_Zeta0]\label{HolomorphicOn_Zeta0}\lean{HolomorphicOn_Zeta0}\leanok
For any $N\ge1$, the function $\zeta_0(N,s)$ is holomorphic on $\{s\in \C\mid \Re(s)>0 ∧ s \ne 1\}$.
Expand All @@ -796,7 +833,7 @@ lemma HolomorphicOn_riemannZeta0 {N : ℕ} (N_pos : 0 < N) :
HolomorphicOn (ζ₀ N) {s : ℂ | s ≠ 10 < s.re} := by
unfold riemannZeta0
apply DifferentiableOn.sum ?_ |>.add ?_|>.add ?_|>.add ?_
· intro n hn
· intro n _
by_cases n0 : n = 0
· apply differentiableOn_const _|>.congr (f := fun _ ↦ 0) ?_
intro s hs
Expand All @@ -812,7 +849,8 @@ lemma HolomorphicOn_riemannZeta0 {N : ℕ} (N_pos : 0 < N) :
· refine DifferentiableOn.const_cpow (by fun_prop) ?_ |>.neg |>.div (by fun_prop) (by norm_num)
· left; simp only [ne_eq, Nat.cast_eq_zero]; omega
· apply DifferentiableOn.mul differentiableOn_id
sorry
apply DifferentiableOn.mono (t := {s : ℂ | 0 < s.re}) (st := by aesop)
exact fun _ hs ↦ (hasDerivAt_Zeta0Integral N_pos hs).differentiableAt.differentiableWithinAt
/-%%
\begin{proof}\uses{riemannZeta0, ZetaBnd_aux1b}
The function $\zeta_0(N,s)$ is a finite sum of entire functions, plus an integral
Expand Down

0 comments on commit c2ab573

Please sign in to comment.