Skip to content

Commit

Permalink
PerronFormula.lean: fix variable of integration and typo in set where…
Browse files Browse the repository at this point in the history
… f is holomorphic.
  • Loading branch information
ajirving committed Dec 7, 2024
1 parent 04c3441 commit c7d4a1f
Showing 1 changed file with 2 additions and 2 deletions.
4 changes: 2 additions & 2 deletions PrimeNumberTheoremAnd/PerronFormula.lean
Original file line number Diff line number Diff line change
Expand Up @@ -505,7 +505,7 @@ lemma isTheta (xpos : 0 < x) :
/-%%
\begin{lemma}[isIntegrable]\label{isIntegrable}\lean{Perron.isIntegrable}\leanok
Let $x>0$ and $\sigma\in\R$. Then
$$\int_{\R}\frac{x^{\sigma+it}}{(\sigma+it)(1+\sigma + it)}d\sigma$$
$$\int_{\R}\frac{x^{\sigma+it}}{(\sigma+it)(1+\sigma + it)}dt$$
is integrable.
\end{lemma}
%%-/
Expand Down Expand Up @@ -957,7 +957,7 @@ lemma formulaGtOne (x_gt_one : 1 < x) (σ_pos : 0 < σ) :
\uses{isHolomorphicOn, residuePull1,
residuePull2, contourPull3, integralPosAux, vertIntBoundLeft,
tendsto_rpow_atTop_nhds_zero_of_norm_gt_one, limitOfConstantLeft}
Let $f(s) = x^s/(s(s+1))$. Then $f$ is holomorphic on $\C \setminus {0,1}$.
Let $f(s) = x^s/(s(s+1))$. Then $f$ is holomorphic on $\C \setminus {0,-1}$.
%%-/
set f : ℂ → ℂ := (fun s ↦ x^s / (s * (s + 1)))
--%% First pull the contour from $(\sigma)$ to $(-1/2)$, picking up a residue $1$ at $s=0$.
Expand Down

0 comments on commit c7d4a1f

Please sign in to comment.