Skip to content

Commit

Permalink
Merge branch 'vllm-project:main' into main
Browse files Browse the repository at this point in the history
  • Loading branch information
Alexei-V-Ivanov-AMD authored May 20, 2024
2 parents 2ff6557 + da5a0b5 commit fb5d552
Show file tree
Hide file tree
Showing 43 changed files with 2,115 additions and 301 deletions.
16 changes: 15 additions & 1 deletion .buildkite/test-pipeline.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -120,9 +120,23 @@ steps:

- label: LoRA Test %N
#mirror_hardwares: [amd]
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_long_context.py
parallelism: 4

- label: LoRA Long Context (Distributed)
#mirror_hardwares: [amd]
num_gpus: 4
# This test runs llama 13B, so it is required to run on 4 GPUs.
commands:
# Temporarily run this way because we cannot clean up GPU mem usage
# for multi GPU tests.
# TODO(sang): Fix it.
- pytest -v -s lora/test_long_context.py::test_rotary_emb_replaced
- pytest -v -s lora/test_long_context.py::test_batched_rope_kernel
- pytest -v -s lora/test_long_context.py::test_self_consistency
- pytest -v -s lora/test_long_context.py::test_quality
- pytest -v -s lora/test_long_context.py::test_max_len

- label: Tensorizer Test
#mirror_hardwares: [amd]
command: apt-get install curl libsodium23 && pytest -v -s tensorizer_loader
Expand Down
4 changes: 0 additions & 4 deletions csrc/quantization/gptq_marlin/gptq_marlin.cu
Original file line number Diff line number Diff line change
Expand Up @@ -1519,10 +1519,6 @@ exec_config_t determine_thread_config(int prob_m, int prob_n, int prob_k,
}
}

printf("WARNING: Marlin kernel is reducing max_m_blocks due to small SM "
"GPU cache. This may "
"hurt performance. Consider upgrading your GPU.\n");

max_m_blocks--; // Process less M blocks per invocation to reduce cache
// usage
}
Expand Down
5 changes: 2 additions & 3 deletions format.sh
Original file line number Diff line number Diff line change
Expand Up @@ -112,7 +112,7 @@ mypy vllm/model_executor --config-file pyproject.toml


CODESPELL_EXCLUDES=(
'--skip' '*docs/source/_build/**'
'--skip' '*docs/source/_build/**,./tests/lora/data'
)

# check spelling of specified files
Expand All @@ -133,10 +133,9 @@ spell_check_changed() {
# `diff-filter=ACM` and $MERGEBASE is to ensure we only lint files that
# exist on both branches.
MERGEBASE="$(git merge-base origin/main HEAD)"

if ! git diff --diff-filter=ACM --quiet --exit-code "$MERGEBASE" -- '*.py' '*.pyi' &>/dev/null; then
git diff --name-only --diff-filter=ACM "$MERGEBASE" -- '*.py' '*.pyi' | xargs \
codespell "${CODESPELL_EXCLUDES[@]}"
codespell "${CODESPELL_EXCLUDES[@]}"
fi
}

Expand Down
2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,7 @@ exclude = [

[tool.codespell]
ignore-words-list = "dout, te, indicies"
skip = "./tests/prompts,./benchmarks/sonnet.txt"
skip = "./tests/prompts,./benchmarks/sonnet.txt,./tests/lora/data"

[tool.isort]
use_parentheses = true
Expand Down
2 changes: 1 addition & 1 deletion requirements-cuda.txt
Original file line number Diff line number Diff line change
Expand Up @@ -7,4 +7,4 @@ nvidia-ml-py # for pynvml package
vllm-nccl-cu12>=2.18,<2.19 # for downloading nccl library
torch == 2.3.0
xformers == 0.0.26.post1 # Requires PyTorch 2.3.0
vllm-flash-attn == 2.5.8.post1 # Requires PyTorch 2.3.0
vllm-flash-attn == 2.5.8.post2 # Requires PyTorch 2.3.0
208 changes: 208 additions & 0 deletions tests/kernels/test_flash_attn.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,208 @@
from typing import List, Optional, Tuple

import pytest
import torch
from vllm_flash_attn import flash_attn_varlen_func, flash_attn_with_kvcache

NUM_HEADS = [(16, 16), (32, 8), (64, 8)]
HEAD_SIZES = [128, 256]
BLOCK_SIZES = [16, 32]
DTYPES = [torch.float16, torch.bfloat16]
NUM_BLOCKS = 32768 # Large enough to test overflow in index calculation.


def ref_paged_attn(
query: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
query_lens: List[int],
kv_lens: List[int],
block_tables: torch.Tensor,
scale: float,
sliding_window: Optional[int] = None,
) -> torch.Tensor:
num_seqs = len(query_lens)
block_tables = block_tables.cpu().numpy()
_, block_size, num_kv_heads, head_size = key_cache.shape

outputs = []
start_idx = 0
for i in range(num_seqs):
query_len = query_lens[i]
kv_len = kv_lens[i]
q = query[start_idx:start_idx + query_len]
q *= scale

num_kv_blocks = (kv_len + block_size - 1) // block_size
block_indices = block_tables[i, :num_kv_blocks]

k = key_cache[block_indices].view(-1, num_kv_heads, head_size)
k = k[:kv_len]
v = value_cache[block_indices].view(-1, num_kv_heads, head_size)
v = v[:kv_len]

if q.shape[1] != k.shape[1]:
k = torch.repeat_interleave(k, q.shape[1] // k.shape[1], dim=1)
v = torch.repeat_interleave(v, q.shape[1] // v.shape[1], dim=1)
attn = torch.einsum("qhd,khd->hqk", q, k).float()
empty_mask = torch.ones(query_len, kv_len)
mask = torch.triu(empty_mask, diagonal=kv_len - query_len + 1).bool()
if sliding_window is not None:
sliding_window_mask = torch.triu(empty_mask,
diagonal=kv_len -
(query_len + sliding_window) +
1).bool().logical_not()
mask |= sliding_window_mask
attn.masked_fill_(mask, float("-inf"))
attn = torch.softmax(attn, dim=-1).to(v.dtype)
out = torch.einsum("hqk,khd->qhd", attn, v)

outputs.append(out)
start_idx += query_len

return torch.cat(outputs, dim=0)


@pytest.mark.parametrize("kv_lens", [[1328, 18, 463], [1, 54, 293, 70]])
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("dtype", DTYPES)
@torch.inference_mode
def test_flash_attn_with_paged_kv(
kv_lens: List[Tuple[int, int]],
num_heads: Tuple[int, int],
head_size: int,
dtype: torch.dtype,
block_size: int,
) -> None:
torch.set_default_device("cuda")
torch.cuda.manual_seed_all(0)
num_seqs = len(kv_lens)
num_query_heads = num_heads[0]
num_kv_heads = num_heads[1]
assert num_query_heads % num_kv_heads == 0
max_kv_len = max(kv_lens)
scale = head_size**-0.5

query = torch.randn(num_seqs, num_query_heads, head_size, dtype=dtype)
key_cache = torch.randn(NUM_BLOCKS,
block_size,
num_kv_heads,
head_size,
dtype=dtype)
value_cache = torch.randn_like(key_cache)
kv_lens_tensor = torch.tensor(kv_lens, dtype=torch.int32)

max_num_blocks_per_seq = (max_kv_len + block_size - 1) // block_size
block_tables = torch.randint(0,
NUM_BLOCKS,
(num_seqs, max_num_blocks_per_seq),
dtype=torch.int32)

output = flash_attn_with_kvcache(
q=query.unsqueeze(1),
k_cache=key_cache,
v_cache=value_cache,
softmax_scale=scale,
causal=True,
block_table=block_tables,
cache_seqlens=kv_lens_tensor,
).squeeze(1)

ref_output = ref_paged_attn(
query=query,
key_cache=key_cache,
value_cache=value_cache,
query_lens=[1] * num_seqs,
kv_lens=kv_lens,
block_tables=block_tables,
scale=scale,
)
assert torch.allclose(output, ref_output, atol=1e-2, rtol=1e-2), \
f"{torch.max(torch.abs(output - ref_output))}"


@pytest.mark.parametrize("seq_lens", [[(1, 1328), (5, 18), (129, 463)]])
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("sliding_window", [None])
@pytest.mark.parametrize("dtype", DTYPES)
@torch.inference_mode
def test_varlen_with_paged_kv(
seq_lens: List[Tuple[int, int]],
num_heads: Tuple[int, int],
head_size: int,
sliding_window: Optional[int],
dtype: torch.dtype,
block_size: int,
) -> None:
torch.set_default_device("cuda")
torch.cuda.manual_seed_all(0)
num_seqs = len(seq_lens)
query_lens = [x[0] for x in seq_lens]
kv_lens = [x[1] for x in seq_lens]
num_query_heads = num_heads[0]
num_kv_heads = num_heads[1]
assert num_query_heads % num_kv_heads == 0
max_query_len = max(query_lens)
max_kv_len = max(kv_lens)
window_size = ((sliding_window,
sliding_window) if sliding_window is not None else
(-1, -1))
scale = head_size**-0.5

query = torch.randn(sum(query_lens),
num_query_heads,
head_size,
dtype=dtype)
key_cache = torch.randn(NUM_BLOCKS,
block_size,
num_kv_heads,
head_size,
dtype=dtype)
value_cache = torch.randn_like(key_cache)
# Normalize the scale of the key and value caches to mitigate
# numerical instability.
key_cache /= head_size**0.5
value_cache /= head_size**0.5
cu_query_lens = torch.tensor([0] + query_lens,
dtype=torch.int32).cumsum(dim=0,
dtype=torch.int32)
cu_kv_lens = torch.tensor([0] + kv_lens,
dtype=torch.int32).cumsum(dim=0,
dtype=torch.int32)

max_num_blocks_per_seq = (max_kv_len + block_size - 1) // block_size
block_tables = torch.randint(0,
NUM_BLOCKS,
(num_seqs, max_num_blocks_per_seq),
dtype=torch.int32)

output = flash_attn_varlen_func(
q=query,
k=key_cache,
v=value_cache,
cu_seqlens_q=cu_query_lens,
cu_seqlens_k=cu_kv_lens,
max_seqlen_q=max_query_len,
max_seqlen_k=max_kv_len,
softmax_scale=scale,
causal=True,
window_size=window_size,
block_table=block_tables,
)

ref_output = ref_paged_attn(
query=query,
key_cache=key_cache,
value_cache=value_cache,
query_lens=query_lens,
kv_lens=kv_lens,
block_tables=block_tables,
scale=scale,
sliding_window=sliding_window,
)
assert torch.allclose(output, ref_output, atol=1e-2, rtol=1e-2), \
f"{torch.max(torch.abs(output - ref_output))}"
Loading

0 comments on commit fb5d552

Please sign in to comment.