时间关系训了三类0、1、2
ep27左右,acc达到0.9左右,可视化散点图初步可分,但是分类边界不明显
ep30左右,可以观察到散点在聚拢
后来发现应该先训no_center_loss的模型
然后用center_loss模型fine-tune
1. using the GT label to embed a (1,2) vector standing for the center
the center is updated along with the changement of the embedding layers' weights
the entire layer is a black box to us
2. using the batch center and a learning rate alpha to update the center
the center is computed through the call function defined in the custom layer
we know what actually happened through the pipeline
学习率的选择很重要,大了不收敛,小了收敛贼慢
raw: 数据可分,但是类内差异较大,因此数据整体分布呈现长椭圆形,raw_ep9
centerloss:相比之下,数据更聚集,custom_ep3
6.1 triplet-center loss: 普通分类只是在找类间边界而没有考虑类内变化,而center loss减小了类内变化,但是考虑类间距离,容易造成类间重叠。