Skip to content

AndreasScharnetzki/MachineLearningFundamentals

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

36 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Based on the Machine Learning Tutorial Series by Dhaval Patel

Machine Learning Fundamentals

A notebook about commonly used machine learning algorithms, containing:

  • Univariate Linear Regression
  • Multivariate Linear Regression
  • Binary & Multiclass Logistic Regression
  • Decision Trees
  • Support Vector Machines (SVM)
  • Random Forest Classifier
  • K-Means Clustering
  • Naive Bayes Classifier
  • L1, L2 Regularization
  • K-Nearest Neigbour Classifier (KNN)
  • Principal Component Analysis (PCA)
  • Bootstrap Aggregation (Bagging)


result
result
result
result