Skip to content

Commit

Permalink
Update Random Forest Training & Predictions - RF Plasma Power versus …
Browse files Browse the repository at this point in the history
…Substrate Temperature.py
  • Loading branch information
AndrewMessecar authored Nov 23, 2023
1 parent 66faca8 commit 4929cf8
Showing 1 changed file with 2 additions and 2 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
# 2023

# Script for training a random forest ensemble algorithm on GaN PAMBE synthesis data and
# using it to make predictions across an entire processing space (see "Test Data Generation.py").
# using it to make predictions across an entire processing space (see "Mapping Data - GaN S2 - RF Plasma Power vs Substrate Temperature.py").

from sklearn.ensemble import RandomForestRegressor
from sklearn.preprocessing import MinMaxScaler
Expand All @@ -14,7 +14,7 @@
# Import the training data
Epitaxy = pd.read_csv(r'# File Path of Training Data File')

# Import the test data for predictions (see "Test Data Generation.py" file)
# Import the test data for predictions (see "Mapping Data - GaN S2 - RF Plasma Power vs Substrate Temperature.py" file)
Test_Inputs = pd.read_csv(r'# File Path of Test Data File')')

Training_Data = pd.DataFrame(Epitaxy, columns=['Substrate Temperature', 'RF Power', 'Ga Temperature', 'N2 Pressure', 'S2'])
Expand Down

0 comments on commit 4929cf8

Please sign in to comment.