Skip to content

🚀 ADjango is a convenient library for simplifying work with Async DRF and Django, which offers various useful managers, services, decorators, utilities for asynchronous programming, working with transactions and much more.

License

Notifications You must be signed in to change notification settings

Artasov/adjango

Repository files navigation

🚀 ADjango

📊 Coverage 70%

Sometimes I use this in different projects, so I decided to put it on pypi

ADjango is a comprehensive library that enhances Django development with Django REST Framework (DRF) and Celery integration. It provides essential tools including asynchronous managers, services, serializers, decorators, exceptions and more utilities for async programming, Celery task scheduling, transaction management, and much more to streamline your Django DRF Celery development workflow.

Installation 🛠️

pip install adjango

Settings ⚙️

  • Add the application to the project

    INSTALLED_APPS = [
        # ...
        'adjango',
    ]
  • In settings.py set the params

    # settings.py
    
    # NONE OF THE PARAMETERS ARE REQUIRED  
    
    # For usage @a/controller decorators
    LOGIN_URL = '/login/' 
    
    # optional
    ADJANGO_BACKENDS_APPS = BASE_DIR / 'apps' # for management commands
    ADJANGO_FRONTEND_APPS = BASE_DIR.parent / 'frontend' / 'src' / 'apps' # for management commands
    ADJANGO_APPS_PREPATH = 'apps.'  # if apps in BASE_DIR/apps/app1,app2...
    ADJANGO_UNCAUGHT_EXCEPTION_HANDLING_FUNCTION = ... # Read about @acontroller, @controller
    ADJANGO_CONTROLLERS_LOGGER_NAME = 'global' # only for usage @a/controller decorators
    ADJANGO_CONTROLLERS_LOGGING = True # only for usage @a/controller decorators
    ADJANGO_EMAIL_LOGGER_NAME = 'email' # for send_emails_task logging
    MIDDLEWARE = [
        ...
        # add request.ip in views if u need
        'adjango.middleware.IPAddressMiddleware',  
        ...
    ]

Overview

Most functions, if available in asynchronous form, are also available in synchronous form.

Manager & Services 🛎️

A simple example and everything is immediately clear...

from adjango.fields import AManyToManyField
from adjango.managers.base import AManager
from adjango.services.base import ABaseService
from adjango.models import AModel
from adjango.models.base import AAbstractUser
from adjango.models.polymorphic import APolymorphicModel

...
...  # Service layer usage
...

# services/user.py
if TYPE_CHECKING:
    from apps.core.models import User


class UserService(ABaseService):
    def __init__(self, obj: 'User') -> None:
        super().__init__(obj)
        self.user = obj

    def get_full_name(self) -> str:
        return f"{self.user.first_name} {self.user.last_name}"


# models/user.py (User redefinition)
class User(AAbstractUser):
    ...

    @property
    def service(self) -> UserService:
        return UserService(self)


# and u can use with nice type hints:
user = await User.objects.aget(id=1)
full_name = user.service.get_full_name()

...
...  # Other best features
...


# models/commerce.py
class Product(APolymorphicModel):
    name = CharField(max_length=100)


class Order(AModel):
    user = ForeignKey(User, CASCADE)
    products = AManyToManyField(Product)


# The following is now possible...
products = await Product.objects.aall()
products = await Product.objects.afilter(name='name')
# Returns an object or None if not found
order = await Order.objects.agetorn(id=69)  # aget or none
if not order: raise

# We install products in the order
await order.products.aset(products)
# Or queryset right away...
await order.products.aset(
    Product.objects.filter(name='name')
)
await order.products.aadd(products[0])

# We get the order again without associated objects
order: Order = await Order.objects.aget(id=69)
# Retrieve related objects asynchronously.
order.user = await order.arelated('user')
products = await order.products.aall()
# Works the same with intermediate processing/query filters
orders = await Order.objects.prefetch_related('products').aall()
for o in orders:
    for p in o.products.all():
        print(p.id)
# thk u

Utils 🔧

aall, afilter, arelated, and so on are available as individual functions

from adjango.utils.funcs import (
  aall, getorn, agetorn,
  afilter, aset, aadd, arelated
)

Mixins 🎨

from adjango.models.mixins import (
    ACreatedAtMixin, ACreatedAtIndexedMixin, ACreatedAtEditableMixin,
    AUpdatedAtMixin, AUpdatedAtIndexedMixin,
    ACreatedUpdatedAtMixin, ACreatedUpdatedAtIndexedMixin
)


class EventProfile(ACreatedUpdatedAtIndexedMixin):
    event = ForeignKey('events.Event', CASCADE, 'members', verbose_name=_('Event'))

    @property
    def service(self) -> EventProfileService:
        return EventProfileService(self)

Decorators 🎀

  • aforce_data

    The aforce_data decorator combines data from the GET, POST and JSON body request in request.data. This makes it easy to access all request data in one place.

  • aatomic

    An asynchronous decorator that wraps function into a transactional context using AsyncAtomicContextManager. If an exception occurs, all database changes are rolled back.

  • acontroller/controller

    Decorators that provide automatic logging and exception handling for views. The acontroller is for async views, controller is for sync views. They do NOT wrap functions in transactions (use @aatomic for that).

    from adjango.adecorators import acontroller
    from adjango.decorators import controller
    
    @acontroller(name='My View', logger='custom_logger', log_name=True, log_time=True)
    async def my_view(request):
        pass
    
    @acontroller('One More View')
    async def my_view_one_more(request):
        pass
    
    @controller(name='Sync View', auth_required=True, log_time=True)
    def my_sync_view(request):
        pass
    • These decorators automatically catch uncaught exceptions and log them if the logger is configured via ADJANGO_CONTROLLERS_LOGGER_NAME and ADJANGO_CONTROLLERS_LOGGING.

    • The controller decorator also supports authentication checking with auth_required parameter.

    • You can also implement the interface:

      class IHandlerControllerException(ABC):
          @staticmethod
          @abstractmethod
          def handle(fn_name: str, request: WSGIRequest | ASGIRequest, e: Exception, *args, **kwargs) -> None:
              """
              An example of an exception handling function.
      
              :param fn_name: The name of the function where the exception occurred.
              :param request: The request object (WSGIRequest or ASGIRequest).
              :param e: The exception to be handled.
              :param args: Positional arguments passed to the function.
              :param kwargs: Named arguments passed to the function.
      
              :return: None
              """
              pass

      and use handle to get an uncaught exception:

      # settings.py
      from adjango.handlers import HCE # use my example if u need
      ADJANGO_UNCAUGHT_EXCEPTION_HANDLING_FUNCTION = HCE.handle

Exceptions 🚨

ADjango provides convenient classes for generating API exceptions with proper HTTP statuses and structured error messages.

from adjango.exceptions.base import (
    ApiExceptionGenerator,
    ModelApiExceptionGenerator,
    ModelApiExceptionBaseVariant as MAEBV
)

# General API exceptions
raise ApiExceptionGenerator('Специальная ошибка', 500)
raise ApiExceptionGenerator('Специальная ошибка', 500, 'special_error')
raise ApiExceptionGenerator(
    'Неверные данные',
    400,
    extra={'field': 'email'}
)

# Model exceptions
from apps.commerce.models import Order

raise ModelApiExceptionGenerator(Order, MAEBV.DoesNotExist)
raise ModelApiExceptionGenerator(
    Order
MAEBV.AlreadyExists,
code = "order_exists",
extra = {"id": 123}
)

# Available exception variants for models:
# DoesNotExist, AlreadyExists, InvalidData, AccessDenied,
# NotAcceptable, Expired, InternalServerError, AlreadyUsed,
# NotUsed, NotAvailable, TemporarilyUnavailable, 
# ConflictDetected, LimitExceeded, DependencyMissing, Deprecated

Serializers 🔧

ADjango extends Django REST Framework serializers to support asynchronous operations, making it easier to handle data in async views. Support methods like adata, avalid_data, ais_valid, and asave.

from adjango.querysets.base import AQuerySet
from adjango.aserializers import (
    AModelSerializer, ASerializer, AListSerializer
)
from adjango.serializers import dynamic_serializer

...


class ConsultationPublicSerializer(AModelSerializer):
    clients = UserPublicSerializer(many=True, read_only=True)
    psychologists = UserPsyPublicSerializer(many=True, read_only=True)
    config = ConsultationConfigSerializer(read_only=True)

    class Meta:
        model = Consultation
        fields = '__all__'


# From the complete serializer we cut off the pieces into smaller ones
ConsultationSerializerTier1 = dynamic_serializer(
    ConsultationPublicSerializer, ('id', 'date',)
)
ConsultationSerializerTier2 = dynamic_serializer(
    ConsultationPublicSerializer, (
        'id', 'date', 'psychologists', 'clients', 'config'
    ), {
        'psychologists': UserPublicSerializer(many=True),  # overridden
    }
)


# Use it, in compact format
@acontroller('Completed Consultations')
@api_view(('GET',))
@permission_classes((IsAuthenticated,))
async def consultations_completed(request):
    page = int(request.query_params.get('page', 1))
    page_size = int(request.query_params.get('page_size', 10))
    return Response({
        'results': await ConsultationSerializerTier2(
            await request.user.completed_consultations[
                  (page - 1) * page_size:page * page_size
                  ].aall(),
            many=True,
            context={'request': request}
        ).adata
    }, status=200)


...


class UserService(ABaseService):
    ...

    @property
    def completed_consultations(self) -> AQuerySet['Consultation']:
        """
        Returns an optimized AQuerySet of all completed consultations of the user
        (both psychologist and client).
        """
        from apps.psychology.models import Consultation
        now_ = now()
        return Consultation.objects.defer(
            'communication_type',
            'language',
            'reserved_by',
            'notifies',
            'cancel_initiator',
            'original_consultation',
            'consultations_feedbacks',
        ).select_related(
            'config',
            'conference',
        ).prefetch_related(
            'clients',
            'psychologists',
        ).filter(
            Q(
                Q(clients=self.user) | Q(psychologists=self.user),
                status=Consultation.Status.PAID,
                date__isnull=False,
                date__lt=now_,
                consultations_feedbacks__user=self.user,
            ) |
            Q(
                Q(clients=self) | Q(psychologists=self.user),
                status=Consultation.Status.CANCELLED,
                date__isnull=False,
            )
        ).distinct().order_by('-updated_at')

    ...

Management

  • copy_project Documentation in the py module itself - copy_project

ADjango ships with extra management commands to speed up project scaffolding.

  • astartproject — clones the adjango-template into the given directory and strips its Git history.

    django-admin astartproject myproject
  • astartup — creates an app skeleton inside apps/ and registers it in INSTALLED_APPS.

    python manage.py astartup blog

    After running the command you will have the following structure:

    apps/
        blog/
            controllers/base.py
            models/base.py
            services/base.py
            serializers/base.py
            tests/base.py
  • newentities — generates empty exception, model, service, serializer and test stubs for the specified models in the target app.

    python manage.py newentities order apps.commerce Order,Product,Price

    Or create a single model:

    python manage.py newentities order apps.commerce Order

Celery 🔥

ADjango provides convenient tools for working with Celery: management commands, decorators, and task scheduler.

For Celery configuration in Django, refer to the official Celery documentation.

Management Commands

  • celeryworker — starts Celery Worker with default settings

    python manage.py celeryworker
    python manage.py celeryworker --pool=solo --loglevel=info -E
    python manage.py celeryworker --concurrency=4 --queues=high_priority,default
  • celerybeat — starts Celery Beat scheduler for periodic tasks

    python manage.py celerybeat
    python manage.py celerybeat --loglevel=debug
  • celerypurge — clears Celery queues from unfinished tasks

    python manage.py celerypurge               # clear all queues
    python manage.py celerypurge --queue=high  # clear specific queue

@task Decorator

The @task decorator automatically logs Celery task execution, including errors:

from celery import shared_task
from adjango.decorators import task


@shared_task
@task(logger="global")
def my_background_task(param1: str, param2: int) -> bool:
    """
    Task with automatic execution logging.
    """
    # your code here
    return True

What the decorator provides:

  • ✅ Automatic logging of task start and completion
  • ✅ Logging of task parameters
  • ✅ Detailed error logging with stack trace
  • ✅ Flexible logger configuration for different tasks

Tasker - Task Scheduler

The Tasker class provides convenient methods for scheduling and managing Celery tasks:

from adjango.utils.celery.tasker import Tasker

# Immediate execution
task_id = Tasker.put(task=my_task, param1='value')

# Delayed execution (in 60 seconds)
task_id = Tasker.put(task=my_task, countdown=60, param1='value')

# Execution at specific time
from datetime import datetime

task_id = Tasker.put(
    task=my_task,
    eta=datetime(2024, 12, 31, 23, 59),
    param1='value'
)

# Cancel task by ID
Tasker.cancel_task(task_id)

# One-time task via Celery Beat (sync)
Tasker.beat(
    task=my_task,
    name='one_time_task',
    schedule_time=datetime(2024, 10, 10, 14, 30),
    param1='value'
)

# Periodic task via Celery Beat (sync)
Tasker.beat(
    task=my_task,
    name='hourly_cleanup',
    interval=3600,  # every hour in seconds
    param1='value'
)

# Crontab schedule via Celery Beat (sync)
Tasker.beat(
    task=my_task,
    name='daily_report',
    crontab={'hour': 7, 'minute': 30},  # every day at 7:30 AM
    param1='value'
)

# Async version of beat is also available
await Tasker.abeat(
    task=my_task,
    name='async_task',
    interval=1800,  # every 30 minutes
    param1='value'
)

Email Sending via Celery

ADjango includes a ready-to-use task for sending emails with templates:

from adjango.tasks import send_emails_task
from adjango.utils.mail import send_emails

# Synchronous sending
send_emails(
    subject='Welcome!',
    emails=('user@example.com',),
    template='emails/welcome.html',
    context={'user': 'John Doe'}
)

# Asynchronous sending via Celery
send_emails_task.delay(
    subject='Hello!',
    emails=('user@example.com',),
    template='emails/hello.html',
    context={'message': 'Welcome to our service!'}
)

# Via Tasker with delayed execution
Tasker.put(
    task=send_emails_task,
    subject='Reminder',
    emails=('user@example.com',),
    template='emails/reminder.html',
    context={'deadline': '2024-12-31'},
    countdown=3600  # send in an hour
)

Other

  • AsyncAtomicContextManager🧘

    An asynchronous context manager for working with transactions, which ensures the atomicity of operations.

    from adjango.utils.base import AsyncAtomicContextManager
    
    async def some_function():
        async with AsyncAtomicContextManager():
            ...  

About

🚀 ADjango is a convenient library for simplifying work with Async DRF and Django, which offers various useful managers, services, decorators, utilities for asynchronous programming, working with transactions and much more.

Topics

Resources

License

Stars

Watchers

Forks

Languages