Skip to content

Commit

Permalink
Merge pull request #252 from e-koch/master
Browse files Browse the repository at this point in the history
Removing np.NaN removed in numpy v2.0
  • Loading branch information
e-koch authored Jan 6, 2025
2 parents aa650ad + 8777868 commit adac77b
Show file tree
Hide file tree
Showing 16 changed files with 49 additions and 49 deletions.
2 changes: 1 addition & 1 deletion docs/preparing_simulated_data.rst
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,7 @@ A common observational practice is to mask noise-only regions of an image or dat
>>> signal_mask = noisy_cube > N * sigma
>>> # Set all places below the noise threshold to NaN in the cube
>>> masked_cube = signal_mask.copy()
>>> masked_cube[~signal_mask] = np.NaN
>>> masked_cube[~signal_mask] = np.nan

TurbuStat does not contain routines to create robust signal masks. Examples of creating signal masks can be found in `Rosolowsky & Leroy 2006 <https://ui.adsabs.harvard.edu/#abs/2006PASP..118..590R/abstract>`_ and `Dame 2011 <https://ui.adsabs.harvard.edu/#abs/2011arXiv1101.1499D/abstract>`_.

Expand Down
6 changes: 3 additions & 3 deletions docs/tutorials/code_for_examples.py
Original file line number Diff line number Diff line change
Expand Up @@ -378,7 +378,7 @@
# Mask some of the data out

masked_img = img.copy()
masked_img[masked_img < np.percentile(img, 25)] = np.NaN
masked_img[masked_img < np.percentile(img, 25)] = np.nan

plt.imshow(masked_img, origin='lower')
plt.colorbar()
Expand Down Expand Up @@ -412,7 +412,7 @@ def pad_with(vector, pad_width, iaxis, kwargs):
from scipy import ndimage as nd
labs, num = nd.label(np.isfinite(padded_masked_img), np.ones((3, 3)))
# Keep the largest regions
padded_masked_img[np.where(labs > 1)] = np.NaN
padded_masked_img[np.where(labs > 1)] = np.nan

plt.imshow(padded_masked_img, origin='lower')
plt.colorbar()
Expand Down Expand Up @@ -450,7 +450,7 @@ def pad_with(vector, pad_width, iaxis, kwargs):
plt.close()

# noisy_masked_img = noisy_img.copy()
# noisy_masked_img[noisy_masked_img < 5 * noise_rms] = np.NaN
# noisy_masked_img[noisy_masked_img < 5 * noise_rms] = np.nan

# pspec_noisy_masked = PowerSpectrum(fits.PrimaryHDU(noisy_masked_img))
# pspec_noisy_masked.run(verbose=True, high_cut=10**-1.2 / u.pix)
Expand Down
6 changes: 3 additions & 3 deletions docs/tutorials/missing_data_noise.rst
Original file line number Diff line number Diff line change
Expand Up @@ -90,7 +90,7 @@ Indeed, we recover the correct slope from the delta-variance.
To demonstrate how masking affects each of these statistics, we will arbitrarily mask low values below the 25 percentile in the example image and run each statistic::

>>> masked_img = img.copy()
>>> masked_img[masked_img < np.percentile(img, 25)] = np.NaN
>>> masked_img[masked_img < np.percentile(img, 25)] = np.nan
>>> plt.imshow(masked_img, origin='lower') # doctest: +SKIP
>>> plt.colorbar() # doctest: +SKIP

Expand Down Expand Up @@ -165,14 +165,14 @@ Another issue that could be encountered with observational data are large empty
... vector[:pad_width[0]] = pad_value
... vector[-pad_width[1]:] = pad_value
... return vector
>>> padded_masked_img = np.pad(masked_img, 128, pad_with, padder=np.NaN)
>>> padded_masked_img = np.pad(masked_img, 128, pad_with, padder=np.nan)

We are also only going to keep the biggest continuous region in the padded image to mimic studying a single object picked from a larger image::

>>> from scipy import ndimage as nd
>>> labs, num = nd.label(np.isfinite(padded_masked_img), np.ones((3, 3)))
>>> # Keep the largest region only
>>> padded_masked_img[np.where(labs > 1)] = np.NaN
>>> padded_masked_img[np.where(labs > 1)] = np.nan
>>> plt.imshow(padded_masked_img, origin='lower') # doctest: +SKIP
>>> plt.colorbar() # doctest: +SKIP

Expand Down
6 changes: 3 additions & 3 deletions turbustat/moments/_moment_errs.py
Original file line number Diff line number Diff line change
Expand Up @@ -444,7 +444,7 @@ def _cube1(cube, axis, scale, moment0, moment1):

good_pix = np.isfinite(moment0) + np.isfinite(moment1)

result[~good_pix] = np.NaN
result[~good_pix] = np.nan

return result

Expand Down Expand Up @@ -488,9 +488,9 @@ def _cube2(cube, axis, scale, moment0, moment1, moment2,
good_pix = np.isfinite(moment0) + np.isfinite(moment1) + \
np.isfinite(moment2)

result[~good_pix] = np.NaN
result[~good_pix] = np.nan

# result[result == 0] = np.NaN
# result[result == 0] = np.nan

return result

Expand Down
4 changes: 2 additions & 2 deletions turbustat/statistics/base_pspec2.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,7 @@ def compute_beam_pspec(self):
self._beam_pow = np.abs(beam_fft**2)

# Avoid infs when dividing out by the beam power spectrum
self._beam_pow[self._beam_pow == 0.0] = np.NaN
self._beam_pow[self._beam_pow == 0.0] = np.nan

def compute_radial_pspec(self, logspacing=False, max_bin=None, **kwargs):
'''
Expand Down Expand Up @@ -215,7 +215,7 @@ def fit_pspec(self, fit_unbinned=False,
self.low_cut.value,
self.high_cut.value)]

clipped_stddev[clipped_stddev == 0.] = np.NaN
clipped_stddev[clipped_stddev == 0.] = np.nan

y_err = 0.434 * clipped_stddev / clipped_ps1D

Expand Down
22 changes: 11 additions & 11 deletions turbustat/statistics/delta_variance/delta_variance.py
Original file line number Diff line number Diff line change
Expand Up @@ -201,7 +201,7 @@ def compute_deltavar(self, allow_huge=False, boundary='wrap',

img_core = \
convolution_wrapper(pad_img, core, boundary=boundary,
fill_value=0. if nan_treatment=='fill' else np.NaN,
fill_value=0. if nan_treatment=='fill' else np.nan,
allow_huge=allow_huge,
nan_treatment=nan_treatment,
use_pyfftw=use_pyfftw,
Expand All @@ -210,7 +210,7 @@ def compute_deltavar(self, allow_huge=False, boundary='wrap',
img_annulus = \
convolution_wrapper(pad_img, annulus,
boundary=boundary,
fill_value=0. if nan_treatment=='fill' else np.NaN,
fill_value=0. if nan_treatment=='fill' else np.nan,
allow_huge=allow_huge,
nan_treatment=nan_treatment,
use_pyfftw=use_pyfftw,
Expand All @@ -219,7 +219,7 @@ def compute_deltavar(self, allow_huge=False, boundary='wrap',
weights_core = \
convolution_wrapper(pad_weights, core,
boundary=boundary,
fill_value=0. if nan_treatment=='fill' else np.NaN,
fill_value=0. if nan_treatment=='fill' else np.nan,
allow_huge=allow_huge,
nan_treatment=nan_treatment,
use_pyfftw=use_pyfftw,
Expand All @@ -228,23 +228,23 @@ def compute_deltavar(self, allow_huge=False, boundary='wrap',
weights_annulus = \
convolution_wrapper(pad_weights, annulus,
boundary=boundary,
fill_value=0. if nan_treatment=='fill' else np.NaN,
fill_value=0. if nan_treatment=='fill' else np.nan,
allow_huge=allow_huge,
nan_treatment=nan_treatment,
use_pyfftw=use_pyfftw,
threads=threads,
pyfftw_kwargs=pyfftw_kwargs)

cutoff_val = min_weight_frac * self.weights.max()
weights_core[np.where(weights_core <= cutoff_val)] = np.NaN
weights_annulus[np.where(weights_annulus <= cutoff_val)] = np.NaN
weights_core[np.where(weights_core <= cutoff_val)] = np.nan
weights_annulus[np.where(weights_annulus <= cutoff_val)] = np.nan

conv_arr = (img_core / weights_core) - \
(img_annulus / weights_annulus)
conv_weight = weights_core * weights_annulus

if preserve_nan:
conv_arr[np.isnan(pad_img)] = np.NaN
conv_arr[np.isnan(pad_img)] = np.nan

if keep_convolve_arrays:
self._convolved_arrays.append(conv_arr)
Expand All @@ -253,8 +253,8 @@ def compute_deltavar(self, allow_huge=False, boundary='wrap',
val, err = _delvar(conv_arr, conv_weight, lag)

if (val <= 0) or (err <= 0) or np.isnan(val) or np.isnan(err):
self._delta_var[i] = np.NaN
self._delta_var_error[i] = np.NaN
self._delta_var[i] = np.nan
self._delta_var_error[i] = np.nan
else:
self._delta_var[i] = val
self._delta_var_error[i] = err
Expand Down Expand Up @@ -908,9 +908,9 @@ def distance_metric(self, verbose=False, xunit=u.pix,
"range and lags for both datasets are equal. "
"Setting curve_distance to NaN.", TurbuStatMetricWarning)

self._curve_distance = np.NaN
self._curve_distance = np.nan
else:
self._curve_distance = np.NaN
self._curve_distance = np.nan

# Distance between the fitted slopes (combined t-statistic)
self._slope_distance = \
Expand Down
4 changes: 2 additions & 2 deletions turbustat/statistics/dendrograms/dendro_stats.py
Original file line number Diff line number Diff line change
Expand Up @@ -750,13 +750,13 @@ def histogram_stat(self, verbose=False,
density=True)[0]
self.histograms1[n, :] = \
np.append(hist1, (np.max(self.nbins) -
bins.size + 1) * [np.NaN])
bins.size + 1) * [np.nan])

hist2 = np.histogram(stand_data2, bins=bins,
density=True)[0]
self.histograms2[n, :] = \
np.append(hist2, (np.max(self.nbins) -
bins.size + 1) * [np.NaN])
bins.size + 1) * [np.nan])

# Normalize
self.histograms1[n, :] /= np.nansum(self.histograms1[n, :])
Expand Down
2 changes: 1 addition & 1 deletion turbustat/statistics/elliptical_powerlaw.py
Original file line number Diff line number Diff line change
Expand Up @@ -179,7 +179,7 @@ def fit_elliptical_powerlaw(values, x, y, p0, fit_method='LevMarq',
if cov_matrix is None:
warn("Covariance matrix calculation failed. Check results "
"carefully.")
stderrs = np.zeros((4,)) * np.NaN
stderrs = np.zeros((4,)) * np.nan
else:
stderrs = np.sqrt(np.abs(np.diag(cov_matrix)))

Expand Down
14 changes: 7 additions & 7 deletions turbustat/statistics/pca/width_estimate.py
Original file line number Diff line number Diff line change
Expand Up @@ -321,7 +321,7 @@ def WidthEstimate1D(inList, method='walk-down'):
scales[idx] = interpolator(np.exp(-1))
except ValueError:
warn("Interpolation failed.")
scales[idx] = np.NaN
scales[idx] = np.nan
# scale_errors[idx] = ??
elif method == 'fit':
g = models.Gaussian1D(amplitude=y[0], mean=[0], stddev=[10],
Expand All @@ -341,8 +341,8 @@ def WidthEstimate1D(inList, method='walk-down'):
# in NaNs.
if fit_g.fit_info['param_cov'] is None:
warn("Fitting failed.")
scales[idx] = np.NaN
scale_errors[idx] = np.NaN
scales[idx] = np.nan
scale_errors[idx] = np.nan
continue

errors = np.sqrt(np.abs(fit_g.fit_info['param_cov'].diagonal()))
Expand All @@ -367,8 +367,8 @@ def WidthEstimate1D(inList, method='walk-down'):
warn("Cannot find width where the 1/e level is"
" reached. Ensure the eigenspectra are "
"normalized!")
scale_errors[idx] = np.NaN
scales[idx] = np.NaN
scale_errors[idx] = np.nan
scales[idx] = np.nan

else:
raise ValueError("method must be 'walk-down', 'interpolate' or"
Expand All @@ -393,7 +393,7 @@ def fit_2D_ellipse(pts, **bootstrap_kwargs):
xwidth_err = ellip.param_errs[2] / np.sqrt(2)
ywidth_err = ellip.param_errs[3] / np.sqrt(2)
except ValueError:
ywidth = xwidth = ywidth_err = xwidth_err = np.NaN
ywidth = xwidth = ywidth_err = xwidth_err = np.nan

return ywidth, xwidth, ywidth_err, xwidth_err, ellip

Expand All @@ -417,7 +417,7 @@ def fit_2D_gaussian(xmat, ymat, z):

if cov is None:
warn("Fitting failed.")
cov = np.zeros((4, 4)) * np.NaN
cov = np.zeros((4, 4)) * np.nan

return output, cov

Expand Down
2 changes: 1 addition & 1 deletion turbustat/statistics/pdf/compare_pdf.py
Original file line number Diff line number Diff line change
Expand Up @@ -307,7 +307,7 @@ def emcee_fit(model, init_params, burnin=200, steps=2000, thin=10):
cov_calc_failed = False
except ValueError:
warn("Variance calculation failed.")
self._model_stderrs = np.ones_like(self.model_params) * np.NaN
self._model_stderrs = np.ones_like(self.model_params) * np.nan
cov_calc_failed = True
elif fit_type == 'mcmc':
chain = emcee_fit(self._model,
Expand Down
6 changes: 3 additions & 3 deletions turbustat/statistics/psds.py
Original file line number Diff line number Diff line change
Expand Up @@ -182,10 +182,10 @@ def pspec(psd2, nbins=None, return_stddev=False, binsize=1.0,
# Mask out bins that have 1 or fewer points
mask = bin_cts <= 1

ps1D_stddev[mask] = np.NaN
ps1D[mask] = np.NaN
ps1D_stddev[mask] = np.nan
ps1D[mask] = np.nan

# ps1D_stddev[ps1D_stddev == 0.] = np.NaN
# ps1D_stddev[ps1D_stddev == 0.] = np.nan

if theta_0 is not None:
return bin_cents, ps1D, ps1D_stddev, azim_mask
Expand Down
2 changes: 1 addition & 1 deletion turbustat/statistics/pspec_bispec/bispec.py
Original file line number Diff line number Diff line change
Expand Up @@ -603,7 +603,7 @@ def distance_metric(self, verbose=False, label1=None,
else:
warn("Bicoherence surface must have equal shapes for the surface"
" distance metric.")
self._surface_distance = np.NaN
self._surface_distance = np.nan

self._mean_distance = np.abs(self.bispec1.bicoherence.mean() -
self.bispec2.bicoherence.mean())
Expand Down
10 changes: 5 additions & 5 deletions turbustat/statistics/stat_moments/highstatmoments.py
Original file line number Diff line number Diff line change
Expand Up @@ -166,10 +166,10 @@ def compute_spatial_distrib(self, radius=None, periodic=True,
np.isfinite(wgt_slice).sum() / float(wgt_slice.size)

if valid_img_frac < min_frac or valid_wgt_frac < min_frac:
self.mean_array[i - pix_rad, j - pix_rad] = np.NaN
self.variance_array[i - pix_rad, j - pix_rad] = np.NaN
self.skewness_array[i - pix_rad, j - pix_rad] = np.NaN
self.kurtosis_array[i - pix_rad, j - pix_rad] = np.NaN
self.mean_array[i - pix_rad, j - pix_rad] = np.nan
self.variance_array[i - pix_rad, j - pix_rad] = np.nan
self.skewness_array[i - pix_rad, j - pix_rad] = np.nan
self.kurtosis_array[i - pix_rad, j - pix_rad] = np.nan

else:
img_slice = img_slice * circle_mask
Expand Down Expand Up @@ -762,7 +762,7 @@ def circular_region(radius):
circle = circle < radius ** 2.

circle = circle.astype(float)
circle[np.where(circle == 0.)] = np.NaN
circle[np.where(circle == 0.)] = np.nan

return circle

Expand Down
6 changes: 3 additions & 3 deletions turbustat/statistics/stats_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -560,7 +560,7 @@ def fourier_shift(x, shift, axis=0):
nonan_shift = _shifter(nonan, shift, axis)
mask_shift = _shifter(mask, shift, axis) > 0.5

nonan_shift[mask_shift] = np.NaN
nonan_shift[mask_shift] = np.nan

return nonan_shift

Expand Down Expand Up @@ -612,6 +612,6 @@ def padwithzeros(vector, pad_width, iaxis, kwargs):


def padwithnans(vector, pad_width, iaxis, kwargs):
vector[:pad_width[0]] = np.NaN
vector[-pad_width[1]:] = np.NaN
vector[:pad_width[0]] = np.nan
vector[-pad_width[1]:] = np.nan
return vector
4 changes: 2 additions & 2 deletions turbustat/statistics/vca_vcs/vcs.py
Original file line number Diff line number Diff line change
Expand Up @@ -488,8 +488,8 @@ def distance_metric(self, verbose=False, xunit=u.pix**-1,

# A density distance is only found if a break was found
if self.vcs1.slope.size == 1 or self.vcs2.slope.size == 1:
self.small_scale_distance = np.NaN
self.break_distance = np.NaN
self.small_scale_distance = np.nan
self.break_distance = np.nan
else:
self.small_scale_distance = \
np.abs((self.vcs1.slope[1] - self.vcs2.slope[1]) /
Expand Down
2 changes: 1 addition & 1 deletion turbustat/statistics/wavelets/wavelet_transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -258,7 +258,7 @@ def fit_transform(self, xlow=None, xhigh=None, brk=None, min_fits_pts=3,

if weighted_fit:
y_err = 0.434 * self.stddev / self.values
y_err[y_err == 0.] = np.NaN
y_err[y_err == 0.] = np.nan

weights = y_err**-2
else:
Expand Down

0 comments on commit adac77b

Please sign in to comment.