Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fixing latex in all translations #173

Merged
merged 1 commit into from
Mar 29, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 6 additions & 6 deletions docs/es/week01/01-1.md
Original file line number Diff line number Diff line change
Expand Up @@ -105,25 +105,25 @@ La forma más eficiente se llama Descenso de Gradiente Estocástico (SGD). Dado

### [Cálculo de gradientes por retropropagación](https://www.youtube.com/watch?v=0bMe_vCZo30&t=2336s)

<!-- Computing gradients by backpropagation is a practical application of the chain rule. The backpropagation for state gradients is as follows:
<!-- Computing gradients by backpropagation is a practical application of the chain rule. The backpropagation equation for the input gradients is as follows:
-->
Calcular gradientes por retropropagación es una aplicación práctica de la regla de la cadena. La propagación hacia atrás para los gradientes del estado es la siguiente:

$$
\begin{aligned}
\frac{\partial C}{\partial X_{i - 1}} &= \frac{\partial C}{\partial X_i}\frac{\partial X_i}{\partial X_{i - 1}} \\
\frac{\partial C}{\partial X_{i - 1}} &= \frac{\partial C}{\partial X_i}\frac{\partial F_i(X_{i - 1}, W_i)}{\partial X_{i - 1}}
\frac{\partial C}{\partial \boldsymbol{x}_{i - 1}} &= \frac{\partial C}{\partial \boldsymbol{x}_i}\frac{\partial \boldsymbol{x}_i}{\partial \boldsymbol{x}_{i - 1}} \\
\frac{\partial C}{\partial \boldsymbol{x}_{i - 1}} &= \frac{\partial C}{\partial \boldsymbol{x}_i}\frac{\partial f_i(\boldsymbol{x}_{i - 1}, \boldsymbol{w}_i)}{\partial \boldsymbol{x}_{i - 1}}
\end{aligned}
$$

<!-- The backpropagation for weight gradients is as follows:
<!-- The backpropagation equation for the weight gradients is as follows:
-->
La propagación hacia atrás para los gradientes de los pesos es:

$$
\begin{aligned}
\frac{\partial C}{\partial W_{i}} &= \frac{\partial C}{\partial X_i}\frac{\partial X_i}{\partial W_{i}} \\
\frac{\partial C}{\partial W_{i}} &= \frac{\partial C}{\partial X_i}\frac{\partial F_i(X_{i - 1}, W_i)}{\partial W_{i}}
\frac{\partial C}{\partial \boldsymbol{w}_{i}} &= \frac{\partial C}{\partial \boldsymbol{x}_i}\frac{\partial \boldsymbol{x}_i}{\partial \boldsymbol{w}_{i}} \\
\frac{\partial C}{\partial \boldsymbol{w}_{i}} &= \frac{\partial C}{\partial \boldsymbol{x}_i}\frac{\partial f_i(\boldsymbol{x}_{i - 1}, \boldsymbol{w}_i)}{\partial \boldsymbol{w}_{i}}
\end{aligned}
$$

Expand Down
8 changes: 4 additions & 4 deletions docs/ko/week01/01-1.md
Original file line number Diff line number Diff line change
Expand Up @@ -66,17 +66,17 @@ translator: Gio

$$
\begin{aligned}
\frac{\partial C}{\partial X_{i - 1}} &= \frac{\partial C}{\partial X_i}\frac{\partial X_i}{\partial X_{i - 1}} \\
\frac{\partial C}{\partial X_{i - 1}} &= \frac{\partial C}{\partial X_i}\frac{\partial F_i(X_{i - 1}, W_i)}{\partial X_{i - 1}}
\frac{\partial C}{\partial \boldsymbol{x}_{i - 1}} &= \frac{\partial C}{\partial \boldsymbol{x}_i}\frac{\partial \boldsymbol{x}_i}{\partial \boldsymbol{x}_{i - 1}} \\
\frac{\partial C}{\partial \boldsymbol{x}_{i - 1}} &= \frac{\partial C}{\partial \boldsymbol{x}_i}\frac{\partial f_i(\boldsymbol{x}_{i - 1}, \boldsymbol{w}_i)}{\partial \boldsymbol{x}_{i - 1}}
\end{aligned}
$$

가중치 경사에 대한 역전파는 다음과 같다:

$$
\begin{aligned}
\frac{\partial C}{\partial W_{i}} &= \frac{\partial C}{\partial X_i}\frac{\partial X_i}{\partial W_{i}} \\
\frac{\partial C}{\partial W_{i}} &= \frac{\partial C}{\partial X_i}\frac{\partial F_i(X_{i - 1}, W_i)}{\partial W_{i}}
\frac{\partial C}{\partial \boldsymbol{w}_{i}} &= \frac{\partial C}{\partial \boldsymbol{x}_i}\frac{\partial \boldsymbol{x}_i}{\partial \boldsymbol{w}_{i}} \\
\frac{\partial C}{\partial \boldsymbol{w}_{i}} &= \frac{\partial C}{\partial \boldsymbol{x}_i}\frac{\partial f_i(\boldsymbol{x}_{i - 1}, \boldsymbol{w}_i)}{\partial \boldsymbol{w}_{i}}
\end{aligned}
$$

Expand Down
8 changes: 4 additions & 4 deletions docs/zh/week01/01-1.md
Original file line number Diff line number Diff line change
Expand Up @@ -67,17 +67,17 @@ $90\%$的深度学习应用使用监督学习。监督学习中,你需要收

$$
\begin{aligned}
\frac{\partial C}{\partial X_{i - 1}} &= \frac{\partial C}{\partial X_i}\frac{\partial X_i}{\partial X_{i - 1}} \\
\frac{\partial C}{\partial X_{i - 1}} &= \frac{\partial C}{\partial X_i}\frac{\partial F_i(X_{i - 1}, W_i)}{\partial X_{i - 1}}
\frac{\partial C}{\partial \boldsymbol{x}_{i - 1}} &= \frac{\partial C}{\partial \boldsymbol{x}_i}\frac{\partial \boldsymbol{x}_i}{\partial \boldsymbol{x}_{i - 1}} \\
\frac{\partial C}{\partial \boldsymbol{x}_{i - 1}} &= \frac{\partial C}{\partial \boldsymbol{x}_i}\frac{\partial f_i(\boldsymbol{x}_{i - 1}, \boldsymbol{w}_i)}{\partial \boldsymbol{x}_{i - 1}}
\end{aligned}
$$

权重梯度的反向传播(计算)如下:

$$
\begin{aligned}
\frac{\partial C}{\partial W_{i}} &= \frac{\partial C}{\partial X_i}\frac{\partial X_i}{\partial W_{i}} \\
\frac{\partial C}{\partial W_{i}} &= \frac{\partial C}{\partial X_i}\frac{\partial F_i(X_{i - 1}, W_i)}{\partial W_{i}}
\frac{\partial C}{\partial \boldsymbol{w}_{i}} &= \frac{\partial C}{\partial \boldsymbol{x}_i}\frac{\partial \boldsymbol{x}_i}{\partial \boldsymbol{w}_{i}} \\
\frac{\partial C}{\partial \boldsymbol{w}_{i}} &= \frac{\partial C}{\partial \boldsymbol{x}_i}\frac{\partial f_i(\boldsymbol{x}_{i - 1}, \boldsymbol{w}_i)}{\partial \boldsymbol{w}_{i}}
\end{aligned}
$$

Expand Down