This paper has been accepted by ECCV 2022
By Ziyue Feng, Liang Yang, Longlong Jing, Haiyan Wang, Yingli Tian, and Bing Li.
Arxiv: Link Youtube: link Project Site: link
You can install the dependencies with:
conda create -n dynamicdepth python=3.6.6
conda activate dynamicdepth
conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c conda-forge
pip install tensorboardX==1.4
conda install opencv=3.3.1 # just needed for evaluation
pip install open3d
pip install wandb
pip install scikit-image
python -m pip install cityscapesscripts
We ran our experiments with PyTorch 1.8.0, CUDA 11.1, Python 3.6.6 and Ubuntu 18.04.
Pull the repository and make a folder named CS_RAW for cityscapes raw data:
git clone https://github.com/AutoAILab/DynamicDepth.git
cd DynamicDepth
cd data
mkdir CS_RAW
From Cityscapes official website download the following packages: 1) leftImg8bit_sequence_trainvaltest.zip
, 2) camera_trainvaltest.zip
into the CS_RAW
folder.
Preprocess the Cityscapes dataset using the prepare_train_data.py
(from SfMLearner) script with following command:
cd CS_RAW
unzip leftImg8bit_sequence_trainvaltest.zip
unzip camera_trainvaltest.zip
cd ..
python prepare_train_data.py \
--img_height 512 \
--img_width 1024 \
--dataset_dir CS_RAW \
--dataset_name cityscapes \
--dump_root CS \
--seq_length 3 \
--num_threads 8
Download cityscapes depth ground truth(provided by manydepth) for evaluation:
cd ..
cd splits/cityscapes/
wget https://storage.googleapis.com/niantic-lon-static/research/manydepth/gt_depths_cityscapes.zip
unzip gt_depths_cityscapes.zip
cd ../..
(Recommended)Download Manydepth pretrained model from Here and put in the log folder. Training from these weights will converge much faster.
mkdir log
cd log
# Download CityScapes_MR.zip to here
unzip CityScapes_MR.zip
cd ..
Download dynamic object masks for Cityscapes dataset from (Google Drive or OneDrive) and extract the train_mask
and val_mask
folder to DynamicDepth/data/CS/
. (232MB for train_mask.zip and 5MB for val_mask.zip)
By default models and log event files are saved to log/dynamicdepth/models
.
python -m dynamicdepth.train # the configs are defined in options.py
val()
function in the trainer.py evaluates the model on Cityscapes testing set.
You can download our pretrained model from the following links:
CNN Backbone | Input size | Cityscapes AbsRel | Link |
---|---|---|---|
ResNet 18 | 640 x 192 | 0.104 | Download 🔗 |
@article{feng2022disentangling,
title={Disentangling Object Motion and Occlusion for Unsupervised Multi-frame Monocular Depth},
author={Feng, Ziyue and Yang, Liang and Jing, Longlong and Wang, Haiyan and Tian, YingLi and Li, Bing},
journal={arXiv preprint arXiv:2203.15174},
year={2022}
}
InstaDM: https://github.com/SeokjuLee/Insta-DM ManyDepth: https://github.com/nianticlabs/manydepth
If you have any concern with this paper or implementation, welcome to open an issue or email me at 'zfeng@clemson.edu'