Skip to content

models Jean Baptiste camembert ner

github-actions[bot] edited this page Dec 16, 2023 · 23 revisions

Jean-Baptiste-camembert-ner

Overview

Summary: camembert-ner is a NER model fine-tuned from camemBERT on the Wikiner-fr dataset and was validated on email/chat data. It shows better performance on entities that do not start with an uppercase. The model has four classes: O, MISC, PER, ORG and LOC. The model can be loaded using HuggingFace. The performance of the model is evaluated using seqeval. Overall, the model has precision 0.8859, recall 0.8971 and f1 0.8914. It shows good performance on PER entities, with precision, recall and f1 of 0.9372, 0.9598 and 0.9483 respectively. The model's author also provided a link to an article on how he used the model results to train a LSTM model for signature detection in emails.

The above summary was generated using ChatGPT. Review the original model card to understand the data used to train the model, evaluation metrics, license, intended uses, limitations and bias before using the model.

Inference samples

Inference type Python sample (Notebook) CLI with YAML
Real time token-classification-online-endpoint.ipynb token-classification-online-endpoint.sh
Batch token-classification-batch-endpoint.ipynb coming soon

Finetuning samples

Task Use case Dataset Python sample (Notebook) CLI with YAML
Text Classification Emotion Detection Emotion emotion-detection.ipynb emotion-detection.sh
Token Classification Named Entity Recognition Conll2003 named-entity-recognition.ipynb named-entity-recognition.sh

Model Evaluation

Task Use case Dataset Python sample (Notebook) CLI with YAML
Token Classification Token Classification CoNLL 2003 evaluate-model-token-classification.ipynb evaluate-model-token-classification.yml

Sample inputs and outputs (for real-time inference)

Sample input

{
    "input_data": {
        "input_string": ["Je m'appelle jean-baptiste et je vis à montréal", "george washington est allé à washington"]
    }
}

Sample output

[
    {
        "0": "['O', 'O', 'I-PER', 'O', 'O', 'O', 'O', 'I-LOC']"
    },
    {
        "0": "['I-PER', 'I-PER', 'O', 'O', 'O', 'I-LOC']"
    }
]

Version: 12

Tags

Preview computes_allow_list : ['Standard_NV12s_v3', 'Standard_NV24s_v3', 'Standard_NV48s_v3', 'Standard_NC6s_v3', 'Standard_NC12s_v3', 'Standard_NC24s_v3', 'Standard_NC24rs_v3', 'Standard_NC6s_v2', 'Standard_NC12s_v2', 'Standard_NC24s_v2', 'Standard_NC24rs_v2', 'Standard_NC4as_T4_v3', 'Standard_NC8as_T4_v3', 'Standard_NC16as_T4_v3', 'Standard_NC64as_T4_v3', 'Standard_ND6s', 'Standard_ND12s', 'Standard_ND24s', 'Standard_ND24rs', 'Standard_ND40rs_v2', 'Standard_ND96asr_v4'] license : mit model_specific_defaults : ordereddict({'apply_deepspeed': 'true', 'apply_lora': 'true', 'apply_ort': 'true'}) SharedComputeCapacityEnabled task : token-classification

View in Studio: https://ml.azure.com/registries/azureml/models/Jean-Baptiste-camembert-ner/version/12

License: mit

Properties

SHA: ef35fe7767c1dad71f5c853838cdd80d0b3441ed

datasets: Jean-Baptiste/wikiner_fr

evaluation-min-sku-spec: 8|0|28|56

evaluation-recommended-sku: Standard_DS4_v2

finetune-min-sku-spec: 4|1|28|176

finetune-recommended-sku: Standard_NC24rs_v3

finetuning-tasks: text-classification, token-classification

inference-min-sku-spec: 8|0|28|56

inference-recommended-sku: Standard_DS4_v2, Standard_D8a_v4, Standard_D8as_v4, Standard_DS5_v2, Standard_D16a_v4, Standard_D16as_v4, Standard_D32a_v4, Standard_D32as_v4, Standard_D48a_v4, Standard_D48as_v4, Standard_D64a_v4, Standard_D64as_v4, Standard_D96a_v4, Standard_D96as_v4, Standard_FX12mds, Standard_F16s_v2, Standard_F32s_v2, Standard_F48s_v2, Standard_F64s_v2, Standard_F72s_v2, Standard_FX24mds, Standard_FX36mds, Standard_FX48mds, Standard_E8s_v3, Standard_E16s_v3, Standard_E32s_v3, Standard_E48s_v3, Standard_E64s_v3, Standard_NC4as_T4_v3, Standard_NC6s_v3, Standard_NC8as_T4_v3, Standard_NC12s_v3, Standard_NC16as_T4_v3, Standard_NC24s_v3, Standard_NC64as_T4_v3, Standard_NC24ads_A100_v4, Standard_NC48ads_A100_v4, Standard_NC96ads_A100_v4, Standard_ND96asr_v4, Standard_ND96amsr_A100_v4, Standard_ND40rs_v2

languages: fr

Clone this wiki locally