-
Notifications
You must be signed in to change notification settings - Fork 124
models bert base cased
Description: The BERT model is a pre-trained model that has been trained on a large corpus of English language data. The model was trained using a masked language modeling (MLM) objective, meaning that the model is able to predict words that were randomly masked in an input sentence. The BERT model can also predict if two sentences were originally consecutive in a text or not. This model is intended to be used as a tool for fine-tuning in various downstream tasks such as sequence classification and question answering, but is not recommended for tasks such as text generation. To use this model, you can utilize a pipeline specifically designed for masked language modeling.
Please Note: This model accepts masks in [mask]
format. See Sample input for reference. > The above summary was generated using ChatGPT. Review the original model card to understand the data used to train the model, evaluation metrics, license, intended uses, limitations and bias before using the model. ### Inference samples Inference type|Python sample (Notebook)|CLI with YAML |--|--|--| Real time|fill-mask-online-endpoint.ipynb|fill-mask-online-endpoint.sh Batch |fill-mask-batch-endpoint.ipynb| coming soon ### Finetuning samples Task|Use case|Dataset|Python sample (Notebook)|CLI with YAML |--|--|--|--|--| Text Classification|Emotion Detection|Emotion|emotion-detection.ipynb|emotion-detection.sh Token Classification|Named Entity Recognition|Conll2003|named-entity-recognition.ipynb|named-entity-recognition.sh Question Answering|Extractive Q&A|SQUAD (Wikipedia)|extractive-qa.ipynb|extractive-qa.sh ### Model Evaluation Task | Use case | Dataset | Python sample (Notebook) | CLI with YAML |--|--|--|--|--| Fill Mask|Fill Mask|rcds/wikipedia-for-mask-filling|evaluate-model-fill-mask.ipynb|evaluate-model-fill-mask.yml ### Sample inputs and outputs (for real-time inference) #### Sample input json { "inputs": { "input_string": ["Paris is the [MASK] of France.", "Today is a [MASK] day!"] } }
#### Sample output json [ { "0": "capital" }, { "0": "beautiful" } ]
Version: 9
Preview
computes_allow_list : ['Standard_NV12s_v3', 'Standard_NV24s_v3', 'Standard_NV48s_v3', 'Standard_NC6s_v3', 'Standard_NC12s_v3', 'Standard_NC24s_v3', 'Standard_NC24rs_v3', 'Standard_NC6s_v2', 'Standard_NC12s_v2', 'Standard_NC24s_v2', 'Standard_NC24rs_v2', 'Standard_NC4as_T4_v3', 'Standard_NC8as_T4_v3', 'Standard_NC16as_T4_v3', 'Standard_NC64as_T4_v3', 'Standard_ND6s', 'Standard_ND12s', 'Standard_ND24s', 'Standard_ND24rs', 'Standard_ND40rs_v2', 'Standard_ND96asr_v4']
license : apache-2.0
model_specific_defaults : ordereddict([('apply_deepspeed', 'true'), ('apply_lora', 'true'), ('apply_ort', 'true')])
task : fill-mask
View in Studio: https://ml.azure.com/registries/azureml/models/bert-base-cased/version/9
License: apache-2.0
SHA: 5532cc56f74641d4bb33641f5c76a55d11f846e0
datasets: bookcorpus, wikipedia
evaluation-min-sku-spec: 8|0|28|56
evaluation-recommended-sku: Standard_DS4_v2
finetune-min-sku-spec: 4|1|28|176
finetune-recommended-sku: Standard_NC24rs_v3
finetuning-tasks: text-classification, token-classification, question-answering
inference-min-sku-spec: 2|0|7|14
inference-recommended-sku: Standard_DS2_v2
languages: en