Skip to content

BDehapiot/ETH-ScopeM_Gassler

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Python Badge TensorFlow Badge CUDA Badge cuDNN Badge
Author Badge Date Badge License Badge
DOI

ETH-ScopeM_Gassler

Spore germination analysis tool

Index

Installation

Pease select your operating system

Windows

Step 1: Download this GitHub Repository

  • Click on the green <> Code button and download ZIP
  • Unzip the downloaded file to a desired location

Step 2: Install Miniforge (Minimal Conda installer)

  • Download and install Miniforge for your operating system
  • Run the downloaded .exe file
    • Select "Add Miniforge3 to PATH environment variable"

Step 3: Setup Conda

  • Open the newly installed Miniforge Prompt
  • Move to the downloaded GitHub repository
  • Run one of the following command:
# TensorFlow with GPU support
mamba env create -f environment_tf_gpu.yml
# TensorFlow with no GPU support 
mamba env create -f environment_tf_nogpu.yml
  • Activate Conda environment:
conda activate Gassler

Your prompt should now start with (Gassler) instead of (base)

MacOS

Step 1: Download this GitHub Repository

  • Click on the green <> Code button and download ZIP
  • Unzip the downloaded file to a desired location

Step 2: Install Miniforge (Minimal Conda installer)

  • Download and install Miniforge for your operating system
  • Open your terminal
  • Move to the directory containing the Miniforge installer
  • Run one of the following command:
# Intel-Series
bash Miniforge3-MacOSX-x86_64.sh
# M-Series
bash Miniforge3-MacOSX-arm64.sh

Step 3: Setup Conda

  • Re-open your terminal
  • Move to the downloaded GitHub repository
  • Run one of the following command:
# TensorFlow with GPU support
mamba env create -f environment_tf_gpu.yml
# TensorFlow with no GPU support 
mamba env create -f environment_tf_nogpu.yml
  • Activate Conda environment:
conda activate Gassler

Your prompt should now start with (Gassler) instead of (base)

Usage

preextract.py

Read data from remote_path, format and save to data_path

  • Paths
- remote_path     # str, path to remote directory
- data_path       # str, path to saving directory
- exclude         # list[str], exclude path(s) containing any of the str
  • Parameters
- pixSize_out     # float, output pixel size (µm) 

main.py

Read data from data_path and execute the main procedure

  • Paths
- remote_path     # str, path to remote directory
- data_path       # str, path to data directory
- target          # str, "all" or "image_name"
- overwrite       # bool, overwrite outputs
  • Parameters
- threshAll       # float, threshold for "all" predictions
- threshOut       # float, threshold for "outlines" predictions
- threshBod       # float, threshold for "bodies" predictions
- min_size        # int, min. size for tracked objects
- min_roundness   # float, min. roundness for tracked objects

Main procedure

procedure

procedure

Outputs

Images

- C1_proj.tif     # channel 1 (spores) std-projection
- C2_proj.tif     # channel 2 (bacteria) sum-projection
- display.tif     # tracked objects display
- labels.tif      # tracked objects labels
- composite.tif   # C1_proj + C2_proj + display

Data

- data.pkl        # PKL file containing all data 
- area.csv        # tracked objects areas
- intensity.csv   # tracked objects C2 intensities 
- length.csv      # tracked objects length  
- roundness.csv   # tracked objects roundness
- plot.jpg        # all data plot

About

Analysis of fungi spore germination

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages