Skip to content

BTP2020/matrix-factorization

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 

Repository files navigation

Implementation of Matrix Factorization in Python

The source code mf.py is an implementation of the matrix factorization algorithm in Python, using stochastic gradient descent. An article with detailed explanation of the algorithm can be found at http://www.albertauyeung.com/post/python-matrix-factorization/.

Below is an example of using the algorithm:

import numpy as np
from mf import MF

# A rating matrix with ratings from 5 users on 4 items
# zero entries are unknown values
R = np.array([
    [5, 3, 0, 1],
    [4, 0, 0, 1],
    [1, 1, 0, 5],
    [1, 0, 0, 4],
    [0, 1, 5, 4],
])

# Perform training and obtain the user and item matrices 
mf = MF(R, K=2, alpha=0.1, beta=0.01, iterations=20)
training_process = mf.train()
print(mf.P)
print(mf.Q)
print(mf.full_matrix())

# Prints the following:
'''
[[ 1.45345236  0.06946249]
 [ 1.12922538  0.2319001 ]
 [-1.21051208  0.94619099]
 [-0.93607816  0.43182699]
 [-0.6919936  -0.93611985]]

[[ 1.42787151 -0.20548935]
 [ 0.84792614  0.29530697]
 [ 0.18071811 -1.2672859 ]
 [-1.4211893   0.20465575]]
 
[[ 4.98407556  2.99856476  3.96309763  1.01351377]
 [ 3.99274702  2.27661831  3.20365416  1.0125506 ]
 [ 1.0064803   1.00498576  2.37696737  4.98530109]
 [ 1.00999456  0.59175173  2.58437035  3.99597255]
 [ 2.26471556  1.01985428  4.9871617   3.9942251 ]]
'''

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •