-
Notifications
You must be signed in to change notification settings - Fork 78
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
127 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,123 @@ | ||
import jittor as jt | ||
|
||
|
||
def unsorted_segment_sum(x, segment_ids, num_segments): | ||
if num_segments is None: | ||
num_segments = int(segment_ids.asnumpy().max() + 1) | ||
|
||
segment_ids = jt.array(segment_ids, dtype=jt.int64) | ||
assert x.shape[0] == segment_ids.shape[0], "the length of segment_ids should be equal to data.shape[0]." | ||
if len(segment_ids.shape) == 1: | ||
s = jt.prod(jt.array(tuple(x.shape[1:]))).to(jt.int32).item() | ||
segment_ids = segment_ids.repeat_interleave(s).view(segment_ids.shape[0], *x.shape[1:]) | ||
|
||
assert x.shape == segment_ids.shape, "data.shape and segment_ids.shape should be equal" | ||
|
||
shape = [num_segments] + list(x.shape[1:]) | ||
tensor = jt.zeros(*shape).to(x.dtype).scatter(0, segment_ids, x, 'add') | ||
return tensor | ||
|
||
def unsorted_segment_mean(x, segment_ids, num_segments=None): | ||
if num_segments is None: | ||
num_segments = int(segment_ids.numpy().max() + 1) | ||
|
||
segment_ids = jt.array(segment_ids, dtype=jt.int64) | ||
assert x.shape[0] == segment_ids.shape[0], "the length of segment_ids should be equal to data.shape[0]." | ||
res = [] | ||
for i in range(num_segments): | ||
mask_index = segment_ids == i | ||
if jt.any(mask_index): | ||
a = jt.mean(x[mask_index], 0) | ||
res.append(a) | ||
else: | ||
a = jt.zeros_like(x[0]) | ||
res.append(a) | ||
if res[0].shape == [1]: | ||
return jt.concat(res, 0) | ||
else: | ||
return jt.stack(res, 0) | ||
|
||
def unsorted_segment_max(x, segment_ids, num_segments=None): | ||
if num_segments is None: | ||
num_segments = int(segment_ids.numpy().max() + 1) | ||
|
||
segment_ids = jt.array(segment_ids, dtype=jt.int64) | ||
assert x.shape[0] == segment_ids.shape[0], "the length of segment_ids should be equal to data.shape[0]." | ||
res = [] | ||
for i in range(num_segments): | ||
mask_index = segment_ids == i | ||
if jt.any(mask_index): | ||
res.append(jt.max(x[mask_index], 0)[0]) | ||
else: | ||
a = jt.zeros_like(x[0]) | ||
a.fill_(jt.array(float('-inf')).to(a.dtype)) | ||
res.append(a) | ||
if res[0].shape == [1]: | ||
return jt.concat(res, 0) | ||
else: | ||
return jt.stack(res, 0) | ||
|
||
|
||
def segment_sum(x, segment_ids, num_segments=None): | ||
if num_segments is None: | ||
num_segments = int(segment_ids.numpy().max() + 1) | ||
|
||
segment_ids = jt.array(segment_ids, dtype=jt.int64) | ||
assert x.shape[0] == segment_ids.shape[0], "the length of segment_ids should be equal to data.shape[0]." | ||
if len(segment_ids.shape) == 1: | ||
s = jt.prod(jt.array(x.shape[1:])).to(jt.int32) | ||
segment_ids = segment_ids.repeat_interleave(s).view(segment_ids.shape[0], *x.shape[1:]) | ||
|
||
assert x.shape == segment_ids.shape, "data.shape and segment_ids.shape should be equal" | ||
|
||
shape = [num_segments] + list(x.shape[1:]) | ||
tensor = jt.zeros(*shape).to(x.dtype).scatter_add(0, segment_ids, x) | ||
return tensor | ||
|
||
|
||
|
||
def segment_mean(x, segment_ids, num_segments=None): | ||
if num_segments is None: | ||
num_segments = int(segment_ids.numpy().max() + 1) | ||
|
||
segment_ids = jt.array(segment_ids, dtype=jt.int64) | ||
assert x.shape[0] == segment_ids.shape[0], "the length of segment_ids should be equal to data.shape[0]." | ||
res = [] | ||
for i in range(num_segments): | ||
mask_index = segment_ids == i | ||
if jt.any(mask_index): | ||
a = jt.mean(x[mask_index], 0) | ||
res.append(a) | ||
else: | ||
a = jt.zeros_like(x[0]) | ||
res.append(a) | ||
if res[0].shape == [1]: | ||
return jt.concat(res, 0) | ||
else: | ||
return jt.stack(res, 0) | ||
|
||
def segment_max(x, segment_ids, num_segments=None): | ||
if num_segments is None: | ||
num_segments = int(segment_ids.numpy().max() + 1) | ||
|
||
segment_ids = jt.array(segment_ids, dtype=jt.int64) | ||
assert x.shape[0] == segment_ids.shape[0], "the length of segment_ids should be equal to data.shape[0]." | ||
res = [] | ||
for i in range(num_segments): | ||
mask_index = segment_ids == i | ||
if jt.any(mask_index): | ||
res.append(jt.max(x[mask_index], 0)[0]) | ||
else: | ||
a = jt.zeros_like(x[0]) | ||
a.fill_(jt.array(float('-inf')).to(a.dtype)) | ||
res.append(a) | ||
if res[0].shape == [1]: | ||
return jt.concat(res, 0) | ||
else: | ||
return jt.stack(res, 0) | ||
|
||
def gspmm(index, weight=None, x=None, reduce='sum'): | ||
pass | ||
|
||
def bspmm(index, weight=None, x=None, reduce='sum'): | ||
pass |