AI Introduction Assignment 2
EuroSAT (Satellite images)
https://www.tensorflow.org/datasets/catalog/eurosat?hl=ko
🔹 Assignment Baseline code Modification
🔹 Ultralytics YOLO v11
img_cls_cnn_1.ipynb
🔹 Code Summary
batch = 64
epochs = 80
imgsz = 64
# Data Augmentation: flipud, fliplr, brightness, rot90, crop
## Model
# Conv layer: filter 32(Batch Normalization) -> 64 -> 128
# Activation: ReLU
# FC layer: dense 512(Dropout 0.3) -> 10
# Optimizer: RMSprop
# loss: Sparse Categorical Crossentropy
# lr: 0.001(~ epoch 25) - 0.0007(~ epoch 40) - 0.0005(~ epoch 50) - 0.0002
🔹 Accuracy & Loss
- Train Accuracy: 0.9829, Train Loss: 0.0551
- Val Accuracy: 0.9422, Val Loss: 0.2511
- Test Accuracy: 0.9510, Test Loss: 0.2159
img_cls_cnn_2.ipynb
🔹 Code Summary
batch = 64
epochs = 80
imgsz = 64
# Data Augmentation: flipud, fliplr, brightness, rot90, crop
## Model
# Conv layer: filter 32(Batch Normalization) -> 64(Batch Normalization) -> 128 -> 256
# Activation: GELU
# FC layer: dense 512(Dropout 0.3) -> dense 256(Dropout 0.2) -> dense 128(Dropout 0.1) -> 10
# Optimizer: RMSprop
# loss: Sparse Categorical Crossentropy
# lr: 0.001(~ epoch 25) - 0.0008(~ epoch 40) - 0.0005(~ epoch 55) - 0.0002
🔹 Accuracy & Loss
- Train Accuracy: 0.9775, Train Loss: 0.0894
- Val Accuracy: 0.9431, Val Loss: 0.2995
- Test Accuracy: 0.9612, Test Loss: 0.1843
img_cls_yolo.ipynb
🔹 Code Summary
batch = 64
epochs = 50
imgsz = 64
patience = 8
# Data Augmentation: flipud, fliplr, degrees, scale, translate
# Model: yolo11s-cls
dropout = 0.1
# Optimizer: AdamW
lr0 = 0.0007
lrf = 0.01
momentum = 0.9
🔹 Accuracy
- Test Accuracy: 0.982
@SKKU (Sungkyunkwan University)